Computational Refinements for Post-Quantum Elliptic Curve Security

被引:0
作者
Sakk, Eric [1 ]
机构
[1] Morgan State Univ, Dept Comp Sci, Baltimore, MD 21239 USA
来源
2022 6TH INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY, CSP 2022 | 2022年
基金
美国国家科学基金会;
关键词
elliptic curves; quantum computation; computer security; Shor's algorithm; ECDLP;
D O I
10.1109/CSP55486.2022.00014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computer security in a post-quantum world is a topic of great significance. The security of a vast number of public key encryption and key distribution techniques is dependent upon various number theoretic frameworks such as factoring, discrete logarithms and elliptic curves. Yet, variations on Shor's algorithm have provided a theoretical basis for rendering such systems vulnerable to quantum attacks. In this work, we review quantum solutions for typical number theoretic problems. After leading up to elliptic curve systems, we highlight the relevance of computing modular inverses. Finally, refinements to quantum versions of the extended Euclidean algorithm are presented.
引用
收藏
页码:32 / 35
页数:4
相关论文
共 24 条
[1]  
Amento B, 2012, Arxiv, DOI arXiv:1209.6348
[2]  
Augot D., 2015, PQCRYPTO: Post-Quantum Cryptography for LongTerm Security
[3]  
Beauregard S, 2003, Arxiv, DOI arXiv:quant-ph/0205095
[4]   Post-quantum cryptography [J].
Bernstein, Daniel J. ;
Lange, Tanja .
NATURE, 2017, 549 (7671) :188-194
[5]  
Draper T. G., 2000, arXiv
[6]  
Ekerå M, 2024, Arxiv, DOI arXiv:1905.09084
[7]  
Ettinger M, 1998, Arxiv, DOI arXiv:quant-ph/9807029
[8]  
Draper TG, 2004, Arxiv, DOI [arXiv:quant-ph/0406142, DOI 10.26421/QIC6.4-5-4, 10.26421/QIC6.4-5-4]
[9]  
Griffiths RB, 1995, Arxiv, DOI arXiv:quant-ph/9511007
[10]  
Haner T., arXiv