A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions

被引:0
作者
Lyu, Yi [1 ,3 ]
Shen, Zaichen [2 ]
Zhou, Ningxu [3 ]
Wen, Zhenfei [3 ]
Chen, Ci [2 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp, Zhongshan Inst, Zhongshan 528400, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[4] Minist Educ, Key Lab Intelligent Informat Proc & Syst Integrat, Guangzhou 510006, Peoples R China
关键词
Domain adaptation; Remaining useful life prediction; Contrastive metric; Feature separation; Deep adaptive alignment;
D O I
10.1016/j.ress.2024.110790
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-driven remaining useful life (RUL) prediction methods have demonstrated excellent performance in recent years. Among these, transfer learning (TL) is widely adopted for cross-condition RUL prediction due to its ability to mitigate feature discrepancies across domains. However, most existing TL methods focus primarily on the global alignment of shared features, neglecting subdomain-specific features from different degradation stages and the impact of domain-private features. In this paper, we propose a feature separation and adaptive alignment model to address this limitation. First, a feature separation network is designed to decompose the deep features into two categories: shared features, which capture the inherent degradation patterns, and domain-specific features, which account for heterogeneity across varying operating conditions. The shared features are further categorized into subdomains based on different degradation stages. To ensure effective alignment, we develop a deep adaptive alignment method that facilitates both global alignment of the shared features and local alignment of the subdomain-specific features. Additionally, a contrastive metric module is introduced to enhance the representativeness of the features, which has been shown to improve both feature separation and alignment effectiveness. Experimental results on two benchmark datasets demonstrate that our proposed method outperforms existing approaches across various evaluation metrics.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Adversarial Transfer Learning for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Kwoh, Chee Keong
    Li, Xiaoli
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [22] Remaining useful life prediction based on an integrated neural network
    Zhang Y.-F.
    Lu Z.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (10): : 1372 - 1380
  • [23] Hard Negative Samples Contrastive Learning for Remaining Useful-Life Prediction of Bearings
    Xu, Juan
    Qian, Lei
    Chen, Weiwei
    Ding, Xu
    LUBRICANTS, 2022, 10 (05)
  • [24] Bearings Remaining Useful Life Prediction with Combinatorial Feature Extraction Method and Gated Recurrent Unit Network
    Xiao, Li
    Liu, Zhenxing
    Zhang, Yong
    Zheng, Ying
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 360 - 365
  • [25] An integrated deep multiscale feature fusion network for aeroengine remaining useful life prediction with multisensor data
    Li, Xingqiu
    Jiang, Hongkai
    Liu, Yuan
    Wang, Tongqing
    Li, Zhenning
    KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [26] Residual-based adversarial feature decoupling for remaining useful life prediction of aero-engines under variable operating conditions
    Wen, Jingcheng
    Ren, Jiaxin
    Zhao, Zhibin
    Zhai, Zhi
    Chen, Xuefeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [27] Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions
    Zhang, Wei
    Li, Xiang
    Ma, Hui
    Luo, Zhong
    Li, Xu
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 211
  • [28] Bearing Remaining Useful Life Prediction Method Based on Transfer Learning
    Wang X.-G.
    Han K.-Z.
    Wang C.
    Li L.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (05): : 665 - 672
  • [29] Remaining useful life prediction of the aircraft engine based on the GRU-GAN network with a feature attention mechanism
    Yuan Y.
    Huang H.
    Cheng C.
    Yu W.
    Ding H.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52 (01): : 198 - 212
  • [30] A Shape-constrained Transfer Temporal Transformer Network for remaining useful life prediction of rotating machines
    Song, Wenbin
    He, Yiming
    Li, Xinyu
    Gao, Liang
    Shen, Weiming
    MEASUREMENT, 2024, 224