A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions

被引:0
|
作者
Lyu, Yi [1 ,3 ]
Shen, Zaichen [2 ]
Zhou, Ningxu [3 ]
Wen, Zhenfei [3 ]
Chen, Ci [2 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp, Zhongshan Inst, Zhongshan 528400, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[4] Minist Educ, Key Lab Intelligent Informat Proc & Syst Integrat, Guangzhou 510006, Peoples R China
关键词
Domain adaptation; Remaining useful life prediction; Contrastive metric; Feature separation; Deep adaptive alignment;
D O I
10.1016/j.ress.2024.110790
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-driven remaining useful life (RUL) prediction methods have demonstrated excellent performance in recent years. Among these, transfer learning (TL) is widely adopted for cross-condition RUL prediction due to its ability to mitigate feature discrepancies across domains. However, most existing TL methods focus primarily on the global alignment of shared features, neglecting subdomain-specific features from different degradation stages and the impact of domain-private features. In this paper, we propose a feature separation and adaptive alignment model to address this limitation. First, a feature separation network is designed to decompose the deep features into two categories: shared features, which capture the inherent degradation patterns, and domain-specific features, which account for heterogeneity across varying operating conditions. The shared features are further categorized into subdomains based on different degradation stages. To ensure effective alignment, we develop a deep adaptive alignment method that facilitates both global alignment of the shared features and local alignment of the subdomain-specific features. Additionally, a contrastive metric module is introduced to enhance the representativeness of the features, which has been shown to improve both feature separation and alignment effectiveness. Experimental results on two benchmark datasets demonstrate that our proposed method outperforms existing approaches across various evaluation metrics.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Tool remaining useful life prediction method based on LSTM under variable working conditions
    Zhou, Jing-Tao
    Zhao, Xu
    Gao, Jing
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 104 (9-12): : 4715 - 4726
  • [22] Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes
    Xiao, Xiaoqi
    Zhang, Jianguo
    Xu, Dan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 253
  • [23] Multi-representation transferable attention network for remaining useful life prediction of rolling bearings under multiple working conditions
    Shi, Yabin
    Cui, Youchang
    Cheng, Han
    Li, Lin
    Li, Xiaopeng
    Kong, Xianguang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [24] A domain adaptation network with feature scale preservation for remaining useful life prediction of rolling bearings under variable operating conditions
    She, Daoming
    Wang, Hu
    Zhang, Hongfei
    Chen, Jin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [25] Deep Transfer Learning Remaining Useful Life Prediction of Different Bearings
    Xu, Juan
    Fang, Mengting
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [26] A Novel Remaining Useful Life Transfer Prediction Method of Rolling Bearings Based on Working Conditions Common Benchmark
    Li, Zhixuan
    Zhang, Kai
    Liu, Yongzhi
    Zou, Yisheng
    Ding, Guofu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [27] Prediction of Bearings Remaining Useful Life Across Working Conditions Based on Transfer Learning and Time Series Clustering
    Mao, Wentao
    He, Jianliang
    Sun, Bin
    Wang, Liyun
    IEEE ACCESS, 2021, 9 : 135285 - 135303
  • [28] Information guided attention network for bearing remaining useful life prediction adaptive to working conditions and fault modes
    Wang, Lei
    Cao, Hongrui
    Chen, Xuefeng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [29] Predicting the Remaining Useful Life of Supercapacitors under Different Operating Conditions
    Qi, Guangheng
    Ma, Ning
    Wang, Kai
    ENERGIES, 2024, 17 (11)
  • [30] A Noise-Boosted Remaining Useful Life Prediction Method for Rotating Machines Under Different Conditions
    Xiao, Lei
    Duan, Fabing
    Tang, Junxuan
    Abbott, Derek
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70