Semiparametric density estimation with localized Bregman divergence

被引:0
作者
Matsuno, Daisuke [1 ]
Naito, Kanta [2 ]
机构
[1] Chiba Univ, Grad Sch Sci & Engn, Chiba, Japan
[2] Tohoku Univ, Grad Sch Informat Sci, Sendai, Japan
关键词
Bregman divergence; Density estimation; Localization; Semiparametric;
D O I
10.1016/j.jmva.2025.105419
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper examines semiparametric density estimation by combining a parametric crude guess and its nonparametric adjustment. The nonparametric adjustment is implemented via minimization of the localized Bregman divergence, which yields a broad class of semiparametric density estimators. Asymptotic theories of the density estimators in this general class are developed. Specific concrete forms of density estimators under a certain divergence and parametric guess are calculated. Simulations for several target densities and application to a real data set reveal that the proposed density estimators offer competitive or, in some cases, better performance compared to fully nonparametric kernel density estimator.
引用
收藏
页数:20
相关论文
共 22 条
  • [1] Azzalini A., 2014, IMS Monographs
  • [2] Basu A., 2010, Statistical Inference: The Minimum Distance Approach, DOI DOI 10.1201/B10956
  • [3] Billingsley P., 1995, Probability and Measure
  • [4] Bregman L., 1967, COMP MATH MATH PHYS+, V7, P620
  • [5] Chacon J.E., 2018, Multivariate Kernel Smoothing and Its Applications, DOI DOI 10.1201/9780429485572
  • [6] Fan J., 1996, Local polynomial modelling and its applications
  • [7] PROJECTION PURSUIT DENSITY-ESTIMATION
    FRIEDMAN, JH
    STUETZLE, W
    SCHROEDER, A
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (387) : 599 - 608
  • [8] Hiriart JB, 1993, Grundlehren der mathematischen Wissenschaften, V306
  • [9] NONPARAMETRIC DENSITY-ESTIMATION WITH A PARAMETRIC START
    HJORT, NL
    GLAD, IK
    [J]. ANNALS OF STATISTICS, 1995, 23 (03) : 882 - 904
  • [10] Hjort NL, 1996, ANN STAT, V24, P1619