Non-existence of Solutions for a Non-Gaussian Equation in Fractional Time with Osgood Type Non-linearity

被引:0
作者
Solis, Soveny [1 ]
Vergara, Vicente [2 ]
机构
[1] Escuela Super Politecn Litoral, Fac Ciencias Nat & Matemat, Dept Matemat, Guayaquil, Ecuador
[2] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Matemat, Concepcion, Chile
关键词
Non-existence of solutions (primary); Blow-up; Osgood-type functions; Super-solutions; Critical exponents; Non-Gaussian process; FUNDAMENTAL SOLUTION; DIFFUSION;
D O I
10.1007/s10884-025-10411-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Osgood functions in the source term are used to produce results for non-existence of local solutions into the framework of non-Gaussian diffusion equations. The critical exponent for non-existence of local solutions is found to depend on the fractional derivative, the non-Gaussian diffusion and the non-linear term. The instantaneous blow-up phenomenon is studied by exploiting estimates of the fundamental solutions. Nevertheless, theory of super-solutions and fixed points are combined for showing existence of global solutions. In this case, the critical exponent for existence of global solutions depends only on the last two parameters above.
引用
收藏
页数:15
相关论文
共 28 条
  • [1] Aguirre J., 1986, Ann Fac Sci Toulouse Math, V8, P175, DOI DOI 10.5802/AFST.637
  • [2] Fractional calculus in mathematical oncology
    Alinei-Poiana, Tudor
    Dulf, Eva-H.
    Kovacs, Levente
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION
    ARONSON, DG
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) : 890 - &
  • [4] CROSSOVER DYNAMICS FROM SUPERDIFFUSION TO SUBDIFFUSION: MODELS AND SOLUTIONS
    Awad, Emad
    Metzler, Ralf
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (01) : 55 - 102
  • [5] Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology
    Belmiloudi, Aziz
    [J]. AIMS MATHEMATICS, 2021, 6 (01): : 821 - 867
  • [6] ABSTRACT LINEAR AND NON-LINEAR VOLTERRA EQUATIONS PRESERVING POSITIVITY
    CLEMENT, P
    NOHEL, JA
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (02) : 365 - 388
  • [7] Cauchy problem for fractional diffusion equations
    Eidelman, SD
    Kochubei, AN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) : 211 - 255
  • [8] Green's Function Estimates for Time-Fractional Evolution Equations
    Johnston, Ifan
    Kolokoltsov, Vassili
    [J]. FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 38
  • [9] Representation of solutions and large-time behavior for fully nonlocal diffusion equations
    Kemppainen, Jukka
    Siljander, Juhana
    Zacher, Rico
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 149 - 201
  • [10] Decay estimates for time-fractional and other non-local in time subdiffusion equations in Rd
    Kemppainen, Jukka
    Siljander, Juhana
    Vergara, Vicente
    Zacher, Rico
    [J]. MATHEMATISCHE ANNALEN, 2016, 366 (3-4) : 941 - 979