RED-Net: A Neural Network for 3D Thyroid Segmentation in Chest CT Using Residual and Dilated Convolutions for Measuring Thyroid Volume

被引:0
作者
Kim, Min-Ji [1 ]
Kim, Jin-A [1 ]
Kim, Naae [2 ]
Hwangbo, Yul [1 ]
Jeon, Hyun Jeong [3 ,4 ]
Lee, Dong-Hwa [3 ,4 ]
Oh, Ji Eun [1 ]
机构
[1] Natl Canc Ctr, Heathcare AI Team, Goyang Si 10406, South Korea
[2] Natl Canc Ctr, Res & Dev Business Fdn, Goyang Si 10408, South Korea
[3] Chungbuk Natl Univ Hosp, Dept Internal Med, Cheongju 28644, South Korea
[4] Chungbuk Natl Univ, Coll Med, Dept Internal Med, Cheongju 28644, South Korea
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Thyroid; Computed tomography; Image segmentation; Three-dimensional displays; Feature extraction; Cancer; Accuracy; Lungs; Volume measurement; Training; Chest CT scans; dilated convolution; goiter; RED-Net; residual blocks; thyroid segmentation; thyroid volume; SPECIFICITY; SENSITIVITY;
D O I
10.1109/ACCESS.2024.3523766
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and upsampling pathway, complemented by a parallel dilated convolution module. This combination allows the model to extract features at multiple scales and capture contextual information to effectively segment even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally, we constructed training and validation sets comprising CT scans of 1,150 adults (aged >= 19 years) who underwent chest CT scans at the National Cancer Center and included data of those without a history of thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure. We evaluated the performance of our method on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk National University Hospital using the same criteria. The results showed that it achieved state-of-the-art performance with a Dice similarity coefficient of 0.8901.
引用
收藏
页码:3026 / 3037
页数:12
相关论文
共 30 条
[1]   Deep-Learning Based Automated Segmentation and Quantitative Volumetric Analysis of Orbital Muscle and Fat for Diagnosis of Thyroid Eye Disease [J].
Alkhadrawi, Adham M. ;
Lin, Lisa Y. ;
Langarica, Saul A. ;
Kim, Kyungsu ;
Ha, Sierra K. ;
Lee, Nahyoung G. ;
Do, Synho .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (05)
[2]   3D Ultrasound Reconstructions of the Carotid Artery and Thyroid Gland Using Artificial-Intelligence-Based Automatic Segmentation-Qualitative and Quantitative Evaluation of the Segmentation Results via Comparison with CT Angiography [J].
Arsenescu, Tudor ;
Chifor, Radu ;
Marita, Tiberiu ;
Santoma, Andrei ;
Lebovici, Andrei ;
Duma, Daniel ;
Vacaras, Vitalie ;
Badea, Alexandru Florin .
SENSORS, 2023, 23 (05)
[3]   A Neural Network for Thyroid Segmentation and Volume Estimation in CT Images [J].
Chang, Chuan-Yu ;
Hong, Yong-Cheng ;
Chung, Pau-Choo ;
Tseng, Chin-Hsiao .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2011, 6 (04) :43-55
[4]  
Chen LC, 2016, Arxiv, DOI arXiv:1412.7062
[5]  
Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, DOI 10.48550/ARXIV.1706.05587]
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[9]   Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center [J].
D'Aviero, Andrea ;
Re, Alessia ;
Catucci, Francesco ;
Piccari, Danila ;
Votta, Claudio ;
Piro, Domenico ;
Piras, Antonio ;
Di Dio, Carmela ;
Iezzi, Martina ;
Preziosi, Francesco ;
Menna, Sebastiano ;
Quaranta, Flaviovincenzo ;
Boschetti, Althea ;
Marras, Marco ;
Micciche, Francesco ;
Gallus, Roberto ;
Indovina, Luca ;
Bussu, Francesco ;
Valentini, Vincenzo ;
Cusumano, Davide ;
Mattiucci, Gian Carlo .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (15)
[10]   Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index [J].
Eelbode, Tom ;
Bertels, Jeroen ;
Berman, Maxim ;
Vandermeulen, Dirk ;
Maes, Frederik ;
Bisschops, Raf ;
Blaschko, Matthew B. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) :3679-3690