Machine learning-guided strategies for reaction conditions design and optimization

被引:11
作者
Chen, Lung-Yi [1 ]
Li, Yi-Pei [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, 1 Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[2] Taiwan Int Grad Program Sustainable Chem Sci & Tec, 128 Sec 2,Acad Rd, Taipei 11529, Taiwan
关键词
data preprocessing; reaction conditions prediction; reaction data mining; reaction optimization; reaction representation; HIGH-THROUGHPUT EXPERIMENTATION; GENERAL REACTION CONDITIONS; CHEMICAL-SYNTHESIS; MOLECULAR FINGERPRINT; AUTOMATED EXTRACTION; REACTION PERFORMANCE; ORGANIC-CHEMISTRY; YIELD PREDICTION; NEURAL-NETWORK; RANDOM FOREST;
D O I
10.3762/bjoc.20.212
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
This review surveys the recent advances and challenges in predicting and optimizing reaction conditions using machine learning techniques. The paper emphasizes the importance of acquiring and processing large and diverse datasets of chemical reactions, and the use of both global and local models to guide the design of synthetic processes. Global models exploit the information from comprehensive databases to suggest general reaction conditions for new reactions, while local models fine-tune the specific parameters for a given reaction family to improve yield and selectivity. The paper also identifies the current limitations and opportunities in this field, such as the data quality and availability, and the integration of high-throughput experimentation. The paper demonstrates how the combination of chemical engineering, data science, and ML algorithms can enhance the efficiency and effectiveness of reaction conditions design, and enable novel discoveries in synthetic chemistry.
引用
收藏
页码:2476 / 2492
页数:17
相关论文
共 219 条
[61]   AI-driven robotic chemist for autonomous synthesis of organic molecules [J].
Ha, Taesin ;
Lee, Dongseon ;
Kwon, Youngchun ;
Park, Min Sik ;
Lee, Sangyoon ;
Jang, Jaejun ;
Choi, Byungkwon ;
Jeon, Hyunjeong ;
Kim, Jeonghun ;
Choi, Hyundo ;
Seo, Hyung-Tae ;
Choi, Wonje ;
Hong, Wooram ;
Park, Young Jin ;
Jang, Junwon ;
Cho, Joonkee ;
Kim, Bosung ;
Kwon, Hyukju ;
Kim, Gahee ;
Oh, Won Seok ;
Kim, Jin Woo ;
Choi, Joonhyuk ;
Min, Minsik ;
Jeon, Aram ;
Jung, Yongsik ;
Kim, Eunji ;
Lee, Hyosug ;
Choi, Youn-Suk .
SCIENCE ADVANCES, 2023, 9 (44)
[62]   Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge [J].
Haese, Florian ;
Aldeghi, Matteo ;
Hickman, Riley J. ;
Roch, Loic M. ;
Aspuru-Guzik, Alan .
APPLIED PHYSICS REVIEWS, 2021, 8 (03)
[63]   Chemputation and the Standardization of Chemical Informatics [J].
Hammer, Alexander J. S. ;
Leonov, Artem, I ;
Bell, Nicola L. ;
Cronin, Leroy .
JACS AU, 2021, 1 (10) :1572-1587
[64]   Digitising chemical synthesis in automated and robotic flow [J].
Hardwick, Tomas ;
Ahmed, Nisar .
CHEMICAL SCIENCE, 2020, 11 (44) :11973-11988
[65]   Olympus: a benchmarking framework for noisy optimization and experiment planning [J].
Hase, Florian ;
Aldeghi, Matteo ;
Hickman, Riley J. ;
Roch, Loic M. ;
Christensen, Melodie ;
Liles, Elena ;
Hein, Jason E. ;
Aspuru-Guzik, Alan .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03)
[66]   Machine Learning of Reaction Properties via Learned Representations of the Condensed Graph of Reaction [J].
Heid, Esther ;
Green, William H. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (09) :2101-2110
[67]   Minimum Information Standards in Chemistry: A Call for Better Research Data Management Practices [J].
Herres-Pawlis, Sonja ;
Bach, Felix ;
Bruno, Ian J. ;
Chalk, Stuart J. ;
Jung, Nicole ;
Liermann, Johannes C. ;
McEwen, Leah R. ;
Neumann, Steffen ;
Steinbeck, Christoph ;
Razum, Matthias ;
Koepler, Oliver .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (51)
[68]  
Hickman R, 2023, chemRxiv, DOI [10.26434/chemrxiv-2023-8nrxx, 10.26434/chemrxiv-2023-8nrxx, DOI 10.26434/CHEMRXIV-2023-8NRXX]
[69]   RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity [J].
Hu, Qian-Nan ;
Deng, Zhe ;
Hu, Huanan ;
Cao, Dong-Sheng ;
Liang, Yi-Zeng .
BIOINFORMATICS, 2011, 27 (17) :2465-2467
[70]   ChatGPT for shaping the future of dentistry: the potential of multi-modal large language model [J].
Huang, Hanyao ;
Zheng, Ou ;
Wang, Dongdong ;
Yin, Jiayi ;
Wang, Zijin ;
Ding, Shengxuan ;
Yin, Heng ;
Xu, Chuan ;
Yang, Renjie ;
Zheng, Qian ;
Shi, Bing .
INTERNATIONAL JOURNAL OF ORAL SCIENCE, 2023, 15 (01)