Automated quantum system modeling with machine learning

被引:1
作者
Mukherjee, K. [1 ,2 ,3 ]
Schachenmayer, J. [4 ,5 ]
Whitlock, S. [5 ,6 ]
Wuester, S. [1 ,7 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Phys, Bhopal 462066, Madhya Pradesh, India
[2] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA
[3] Univ Oklahoma, Ctr Quantum Res & Technol, Norman, OK 73019 USA
[4] Univ Strasbourg, CESQ, ISIS, UMR 7006, F-67000 Strasbourg, France
[5] CNRS, F-67000 Strasbourg, France
[6] Univ Strasbourg, ISIS, UMR 7006, F-67000 Strasbourg, France
[7] PlanQC GmbH, Lichtenbergstr 8, D-85748 Garching, Germany
基金
欧盟地平线“2020”;
关键词
machine learning; quantum tomography; open quantum systems & decoherence; quantum many-body systems; ENERGY-TRANSFER; DYNAMICS;
D O I
10.1088/2058-9565/ada79a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Despite the complexity of quantum systems in the real world, models with just a few effective many-body states often suffice to describe their quantum dynamics, provided decoherence is accounted for. We show that a machine learning algorithm is able to construct such models, given a straightforward set of quantum dynamics measurements. The effective Hilbert space can be a black box, with variations of the coupling to just one accessible output state being sufficient to generate the required training data. We demonstrate through simulations of a Markovian open quantum system that a neural network can automatically detect the number N of effective states and the most relevant Hamiltonian terms and state-dephasing processes and rates. For systems with N <= 5 we find typical mean relative errors of predictions in the 10% range. With more advanced networks and larger training sets, it is conceivable that a future single software can provide the automated first stop solution to model building for an unknown device or system, complementing and validating the conventional approach based on physical insight into the system.
引用
收藏
页数:7
相关论文
共 33 条
[11]   Machine learning for quantum dynamics: deep learning of excitation energy transfer properties [J].
Hase, Florian ;
Kreisbeck, Christoph ;
Aspuru-Guzik, Alan .
CHEMICAL SCIENCE, 2017, 8 (12) :8419-8426
[12]  
Heightman T, 2024, Arxiv, DOI arXiv:2408.08639
[13]   Autoregressive Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [J].
Luo, Di ;
Chen, Zhuo ;
Carrasquilla, Juan ;
Clark, Bryan K. .
PHYSICAL REVIEW LETTERS, 2022, 128 (09)
[14]   Sub-10-fs observation of bound exciton formation in organic optoelectronic devices [J].
Maimaris, Marios ;
Pettipher, Allan J. ;
Azzouzi, Mohammed ;
Walke, Daniel J. ;
Zheng, Xijia ;
Gorodetsky, Andrei ;
Dong, Yifan ;
Tuladhar, Pabitra Shakya ;
Crespo, Helder ;
Nelson, Jenny ;
Tisch, John W. G. ;
Bakulin, Artem A. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[15]   Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes [J].
Mostame, Sarah ;
Rebentrost, Patrick ;
Eisfeld, Alexander ;
Kerman, Andrew J. ;
Tsomokos, Dimitris I. ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2012, 14
[16]  
Mucherino A., 2009, DATA MINING AGR
[17]  
Mukherjee K, 2024, Arxiv, DOI arXiv:2412.05742
[18]   Neural-network-based qubit-environment characterization [J].
Papic, Miha ;
de Vega, Ines .
PHYSICAL REVIEW A, 2022, 105 (02)
[19]   Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer [J].
Peng, Hui-Qing ;
Niu, Li-Ya ;
Chen, Yu-Zhe ;
Wu, Li-Zhu ;
Tung, Chen-Ho ;
Yang, Qing-Zheng .
CHEMICAL REVIEWS, 2015, 115 (15) :7502-7542
[20]   Complete characterization of a quantum process: The two-bit quantum gate [J].
Poyatos, JF ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :390-393