Advanced graphene oxide synthesis for arsenic removal from groundwater in Mexico and Colombia

被引:1
作者
Rodriguez-Caicedo, J. P. [1 ]
Joya-Cardenas, D. R. [1 ,2 ]
Gallegos-Munoz, A. [3 ]
Abraham-Juarez, M. R. [4 ]
Zapata-Torres, M. [5 ]
Damian-Ascencio, C. E. [3 ]
Saldana-Robles, A. [1 ,6 ]
机构
[1] Univ Guanajuato, Grad Program Biosci, Irapuato 36500, Mexico
[2] Univ Santander, Fac Ingn & Tecnol, Inst Invest Xerira, Bucaramanga 680003, Colombia
[3] Univ Guanajuato, Dept Mech Engn, Salamanca 36800, Mexico
[4] Univ Guanajuato, Dept Food Engn, Irapuato 36500, Mexico
[5] Inst Politecn Nacl, CICATA Unidad Legaria, Legaria 694, Mexico City 11500, Mexico
[6] Univ Guanajuato, Dept Agr Engn, Irapuato 36500, Mexico
关键词
Graphene oxide; Arsenic removal; Adsorption optimization; Groundwater remediation; Sustainable materials; ADSORPTION; OXIDATION; PARTICLE; WATER;
D O I
10.1016/j.rineng.2025.104189
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents the optimization of graphene oxide (GO) synthesis for arsenic (As) removal from contaminated groundwater in Mexico and Colombia, using the modified Hummers method. By applying response surface methodology (RSM), the concentrations of NaNO3 and KMnO4 were adjusted to maximize the density of oxygenated functional groups, significantly enhancing the adsorption capacity for As(V). Characterization results revealed a reduction in macroporosity and an increase in mesoporosity and microporosity, contributing to the superior adsorption performance. The optimized GO achieved an adsorption capacity of 99.13 mg g-1 at 308 K under competitive conditions with other ions such as F-, CrO42-, Cl-, CO32-, and SO42-. Additionally, the synthesis process reduced toxic by-products, demonstrating sustainability for industrial-scale applications. These findings represent a significant advancement in the development of efficient and sustainable materials for groundwater remediation.
引用
收藏
页数:13
相关论文
共 64 条
[1]  
Abaszade RG, 2022, J OPTOELECTRON BIOME, V14, P107
[2]   Isotherm and Kinetic Modeling of Strontium Adsorption on Graphene Oxide [J].
Abu-Nada, Abdulrahman ;
Abdala, Ahmed ;
McKay, Gordon .
NANOMATERIALS, 2021, 11 (11)
[3]  
Ahmadzadeh Saeid, 2023, Journal of Environmental Health and Sustainable Development, V8, P1862, DOI 10.18502/jehsd.v8i1.12317
[4]   XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods [J].
Al-Gaashani, R. ;
Najjar, A. ;
Zakaria, Y. ;
Mansour, S. ;
Atieh, M. A. .
CERAMICS INTERNATIONAL, 2019, 45 (11) :14439-14448
[5]  
Alam S, 2017, 2017 INTERNATIONAL CONFERENCE ON BROADBAND COMMUNICATION, WIRELESS SENSORS AND POWERING (BCWSP), P1
[6]   Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris [J].
Aliyev, Elvin ;
Filiz, Volkan ;
Khan, Muntazim M. ;
Lee, Young Joo ;
Abetz, Clarissa ;
Abetz, Volker .
NANOMATERIALS, 2019, 9 (08)
[7]   Arsenic removal technologies and future trends: A mini review [J].
Alka, Sadiya ;
Shahir, Shafinaz ;
Ibrahim, Norahim ;
Ndejiko, Mohammed Jibrin ;
Vo, Dai-Viet N. ;
Abd Manan, Fazilah .
JOURNAL OF CLEANER PRODUCTION, 2021, 278
[8]   Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method [J].
Alkhouzaam, Abedalkader ;
Qiblawey, Hazim ;
Khraisheh, Majeda ;
Atieh, Muataz ;
Al-Ghouti, Mohammad .
CERAMICS INTERNATIONAL, 2020, 46 (15) :23997-24007
[9]   Arsenic in drinking water and adverse birth outcomes in Ohio [J].
Almberg, Kirsten S. ;
Turyk, Mary E. ;
Jones, Rachael M. ;
Rankin, Kristin ;
Freels, Sally ;
Graber, Judith M. ;
Stayner, Leslie T. .
ENVIRONMENTAL RESEARCH, 2017, 157 :52-59
[10]   Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurban paramo, Colombia [J].
Alonso, David L. ;
Perez, Rodrigo ;
Okio, Coco K. Y. A. ;
Castillo, Elianna .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 264