Data flow in clinical laboratories: could metadata and peridata bridge the gap to new AI-based applications?

被引:9
作者
Padoan, Andrea [1 ,2 ]
Cadamuro, Janne [3 ]
Frans, Glynis [4 ,5 ]
Cabitza, Federico [6 ,7 ]
Tolios, Alexander [8 ]
De Bruyne, Sander [9 ,10 ]
van Doorn, William [11 ]
Elias, Johannes [12 ,13 ]
Debeljak, Zeljko [14 ,15 ]
Perez, Salomon Martin [16 ]
Ozdemir, Habib [17 ]
Carobene, Anna [18 ]
机构
[1] Univ Padua, Dept Med DIMED, Padua, Italy
[2] Univ Hosp Padova, Lab Med Unity, Padua, Italy
[3] Paracelsus Med Univ Salzburg, Dept Lab Med, Salzburg, Austria
[4] UZ Leuven, Dept Lab Med, Leuven, Belgium
[5] Katholieke Univ Leuven, Dept Microbiol Immunol & Transplantat KU Leuven, Leuven, Belgium
[6] Univ Studi Milano Bicocca, DISCo, Milan, Italy
[7] IRCCS Ist Ortoped Galeazzi, Milan, Italy
[8] Med Univ Vienna, Dept Transfus Med & Cell Therapy, Vienna, Austria
[9] Univ Ghent, Dept Diagnost Sci, Ghent, Belgium
[10] AZ Sint Blasius, Dept Lab Med, Dendermonde, Belgium
[11] Maastricht Univ, Med Ctr, Dept Clin Chem, Cent Diagnost Lab, Maastricht, Netherlands
[12] MDI Limbach Berlin GmbH, Berlin, Germany
[13] HMU Hlth & Med Univ GmbH, Potsdam, Germany
[14] Josip Juraj Strossmayer Univ Osijek, Fac Med, Osijek, Croatia
[15] Univ Hosp Ctr Osijek, Clin Inst Lab Diagnost, Osijek, Croatia
[16] Hosp Univ Virgen Macarena, Unidad Bioquim Clin, Seville, Spain
[17] Hlth Inst Turkiye TUSEB, Turkiye Hlth Data Res & Artificial Intelligence Ap, Istanbul, Turkiye
[18] IRCCS San Raffaele Sci Inst, Milan, Italy
关键词
metadata; peridata; artificial intelligence; clinical laboratory; total testing process; laboratory medicine;
D O I
10.1515/cclm-2024-0971
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
In the last decades, clinical laboratories have significantly advanced their technological capabilities, through the use of interconnected systems and advanced software. Laboratory Information Systems (LIS), introduced in the 1970s, have transformed into sophisticated information technology (IT) components that integrate with various digital tools, enhancing data retrieval and exchange. However, the current capabilities of LIS are not sufficient to rapidly save the extensive data, generated during the total testing process (TTP), beyond just test results. This opinion paper discusses qualitative types of TTP data, proposing how to divide laboratory-generated information into two categories, namely metadata and peridata. Being both metadata and peridata information derived from the testing process, it is proposed that the first is useful to describe the characteristics of data, while the second is for interpretation of test results. Together with standardizing preanalytical coding, the subdivision of laboratory-generated information into metadata or peridata might enhance ML studies, also by facilitating the adherence of laboratory-derived data to the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles. Finally, integrating metadata and peridata into LIS can improve data usability, support clinical utility, and advance AI model development in healthcare, emphasizing the need for standardized data management practices.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Machine learning algorithms in sepsis [J].
Agnello, Luisa ;
Vidali, Matteo ;
Padoan, Andrea ;
Lucis, Riccardo ;
Mancini, Alessio ;
Guerranti, Roberto ;
Plebani, Mario ;
Ciaccio, Marcello ;
Carobene, Anna .
CLINICA CHIMICA ACTA, 2024, 553
[2]   Evaluation and Real-World Performance Monitoring of Artificial Intelligence Models in Clinical Practice: Try It, Buy It, Check It [J].
Allen, Bibb ;
Dreyer, Keith ;
Stibolt, Robert ;
Agarwal, Sheela ;
Coombs, Laura ;
Treml, Chris ;
Elkholy, Mona ;
Brink, Laura ;
Wald, Christoph .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2021, 18 (11) :1489-1496
[3]  
[Anonymous], Use SNOMED CT
[4]  
[Anonymous], 2015, Information technology-Vocabulary
[5]   Information Technology Support for Clinical Genetic Testing within an Academic Medical Center [J].
Aronson, Samuel ;
Mahanta, Lisa ;
Ros, Lei Lei ;
Clark, Eugene ;
Babb, Lawrence ;
Oates, Michael ;
Rehm, Heidi ;
Lebo, Matthew .
JOURNAL OF PERSONALIZED MEDICINE, 2016, 6 (01) :1-9
[6]   Optimizing Equity: Working towards Fair Machine Learning Algorithms in Laboratory Medicine [J].
Azimi, Vahid ;
Zaydman, Mark A. .
JOURNAL OF APPLIED LABORATORY MEDICINE, 2023, 8 (01) :113-128
[7]   Machine Learning for Clinical Chemists [J].
Badrick, Tony ;
Banfi, Giuseppe ;
Bietenbeck, Andreas ;
Cervinski, Mark A. ;
Loh, Tze Ping ;
Sikaris, Ken .
CLINICAL CHEMISTRY, 2019, 65 (11) :1350-1356
[8]  
Bellini C., 2024, Biochim Clin, V48, P46
[9]   A survey on Artificial Intelligence and Big Data utilisation in Italian clinical laboratories [J].
Bellini, Claudia ;
Padoan, Andrea ;
Carobene, Anna ;
Guerranti, Roberto .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2022, 60 (12) :2017-2026
[10]   Big Data in Laboratory Medicine-FAIR Quality for AI? [J].
Blatter, Tobias Ueli ;
Witte, Harald ;
Nakas, Christos Theodoros ;
Leichtle, Alexander Benedikt .
DIAGNOSTICS, 2022, 12 (08)