DRIVE: Data-driven Robot Input Vector Exploration

被引:1
作者
Baril, Dominic [1 ]
Deschenes, Simon-Pierre
Coupal, Luc
Goffin, Cyril
Lepine, Julien
Giguere, Philippe
Pomerleau, Francois [1 ]
机构
[1] Univ Laval, Northern Robot Lab, Quebec City, PQ, Canada
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024 | 2024年
基金
加拿大自然科学与工程研究理事会;
关键词
VEHICLE MODEL;
D O I
10.1109/ICRA57147.2024.10611172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An accurate motion model is a fundamental component of most autonomous navigation systems. While much work has been done on improving model formulation, no standard protocol exists for gathering empirical data required to train models. In this work, we address this issue by proposing Data-driven Robot Input Vector Exploration (DRIVE), a protocol that enables characterizing uncrewed ground vehicles (UGVs) input limits and gathering empirical model training data. We also propose a novel learned slip approach outperforming similar acceleration learning approaches. Our contributions are validated through an extensive experimental evaluation, cumulating over 7 km and 1.8 h of driving data over three distinct UGVs and four terrain types. We show that our protocol offers increased predictive performance over common human-driven data-gathering protocols. Furthermore, our protocol converges with 46 s of training data, almost four times less than the shortest human dataset gathering protocol. We show that the operational limit for our model is reached in extreme slip conditions encountered on surfaced ice. DRIVE is an efficient way of characterizing UGV motion in its operational conditions. Our code and dataset are both available online at this link: https://github.com/norlab-ulaval/DRIVE.
引用
收藏
页码:5829 / 5836
页数:8
相关论文
共 25 条
[1]  
Baril D., 2022, Field Robotics, V2, P1628
[2]   Evaluation of Skid-Steering Kinematic Models for Subarctic Environments [J].
Baril, Dominic ;
Grondin, Vincent ;
Deschenes, Simon-Pierre ;
Laconte, Johann ;
Vaidis, Maxime ;
Kubelka, Vladimir ;
Gallant, Andre ;
Giguere, Philippe ;
Pomerleau, Francois .
2020 17TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2020), 2020, :198-205
[3]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[4]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[5]   Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning [J].
Brunke, Lukas ;
Greeff, Melissa ;
Hall, Adam W. ;
Yuan, Zhaocong ;
Zhou, Siqi ;
Panerati, Jacopo ;
Schoellig, Angela P. .
ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2022, 5 :411-444
[6]  
Bussmann K, 2018, IEEE INT C INT ROBOT, P2449, DOI 10.1109/IROS.2018.8594294
[7]   Autonomous Drifting with 3 Minutes of Data via Learned Tire Models [J].
Djeumou, Franck ;
Goh, Jonathan Y. M. ;
Topcu, Ufuk ;
Balachandran, Avinash .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, :968-974
[8]   Safe and Smooth: Certified Continuous-Time Range-Only Localization [J].
Dumbgen, Frederike ;
Holmes, Connor ;
Barfoot, Timothy D. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) :1117-1124
[9]   Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge [J].
Ebadi, Kamak ;
Bernreiter, Lukas ;
Biggie, Harel ;
Catt, Gavin ;
Chang, Yun ;
Chatterjee, Arghya ;
Denniston, Christopher E. ;
Deschenes, Simon-Pierre ;
Harlow, Kyle ;
Khattak, Shehryar ;
Nogueira, Lucas ;
Palieri, Matteo ;
Petracek, Pavel ;
Petrlik, Matej ;
Reinke, Andrzej ;
Kratky, Vit ;
Zhao, Shibo ;
Agha-mohammadi, Ali-akbar ;
Alexis, Kostas ;
Heckman, Christoffer ;
Khosoussi, Kasra ;
Kottege, Navinda ;
Morrell, Benjamin ;
Hutter, Marco ;
Pauling, Fred ;
Pomerleau, Francois ;
Saska, Martin ;
Scherer, Sebastian ;
Siegwart, Roland ;
Williams, Jason L. ;
Carlone, Luca .
IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 :936-959
[10]   Cautious Model Predictive Control Using Gaussian Process Regression [J].
Hewing, Lukas ;
Kabzan, Juraj ;
Zeilinger, Melanie N. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) :2736-2743