Infinitesimal prolongation of the Ψ-Hilfer derivative

被引:1
作者
Costa, F. S. [1 ]
Soares, J. C. A. [2 ]
Sousa, J. V. C. [1 ]
Frederico, G. S. F. [3 ]
Araujo, G. L. [1 ]
机构
[1] Univ Estadual Maranhao, Ave Lourenco Vieira Silva 1000, BR-65055310 Sao Luis, MA, Brazil
[2] Mato Grosso State Univ, Rua 130, BR-78390000 Barra Bugres, MT, Brazil
[3] Univ Fed Ceara, Rua Felipe Santiago 411, BR-62900000 Russas, CE, Brazil
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2025年 / 199卷
关键词
Lie point symmetry; Thomas-Fermi equation; Fractional derivative; LIE SYMMETRY ANALYSIS; CALCULUS; EQUATION;
D O I
10.1016/j.bulsci.2024.103574
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a study on the infinitesimal prolongation of Psi Hilfer fractional derivative is performed. The properties of Lie group transformation are presented, which are applied in the fractional Psi-Thomas-Fermi equation. Numerical simulations are presented to the model. (c) 2025 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:27
相关论文
共 30 条
[1]  
Anco S.C., 2002, Symmetry and Integration Methods for Differential Equations
[2]   On the invariant solutions of space/time-fractional diffusion equations [J].
Bahrami, F. ;
Najafi, R. ;
Hashemi, M. S. .
INDIAN JOURNAL OF PHYSICS, 2017, 91 (12) :1571-1579
[3]   Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations [J].
Buckwar, E ;
Luchko, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :81-97
[4]   Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives [J].
Costa, Felix S. ;
Soares, Junior C. A. ;
Frederico, Gastao S. F. ;
Sousa, J. Vanterler da C. ;
Jarosz, S. .
REVIEWS IN MATHEMATICAL PHYSICS, 2024, 36 (05)
[5]   Symmetry group methods for fundamental solutions [J].
Craddock, M ;
Platen, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) :285-302
[6]  
de Oliveira E.C., 2019, Solved Exercises in Fractional Calculus
[7]   A formulation of Noether's theorem for fractional problems of the calculus of variations [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :834-846
[8]  
Gazizov RK, 2012, UFA MATH J, V4, P54
[9]   Symmetry properties of fractional diffusion equations [J].
Gazizov, R. K. ;
Kasatkin, A. A. ;
Lukashchuk, S. Yu .
PHYSICA SCRIPTA, 2009, T136
[10]  
Gazizov R. K., 2007, Vestn. UGATU, V9, P125, DOI DOI 10.1088/0031-8949/2009/T136/014016