Plasmon enhanced oxygen evolution reaction on Au decorated Ni(OH)2 nanostructures: The role of alkaline cations solvation

被引:3
作者
Germano, Lucas D. [1 ]
De Angelis, Leonardo D. [1 ]
Batista, Ana P. De Lima [2 ]
De Oliveira-Filho, Antonio G. Sampaio [3 ]
De Torresi, Susana I. Cordoba [1 ]
机构
[1] Univ Sao Paulo, Inst Quim, Av Prof Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil
[2] Univ Fed Sao Carlos UFSCar, Dept Quim, Grp Computat Catalise & Espectroscopia GCCE, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Sao Paulo, Inst Quim Sao Carlos, Sao Carlos, SP, Brazil
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2025年 / 363卷
基金
巴西圣保罗研究基金会;
关键词
Electrochemistry; Electrocatalysis; Water splitting; Environment; Clean energy; Plasmonic; NICKEL-HYDROXIDE ELECTRODES; INFRARED-SPECTRUM; WATER; ELECTROLYSIS; ADSORPTION; PROTON; ROBUST; MODE;
D O I
10.1016/j.apcatb.2024.124804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water electrolysis is widely acknowledged to be kinetically hindered by the oxygen evolution reaction (OER), which involves multiple electron transfer steps. A critical yet often overlooked factor ruling the OER rate is the intricate interplay between alkaline cations of electrolyte, reaction intermediates, and the electrocatalyst surface. This study investigates the impact of plasmonic excitation on the OER using hexagonal hybrid Ni(OH)(2)-Au nanoplates in different alkaline electrolytes. While CsOH electrolyte exhibited the highest overall OER electroactivity, LiOH presented a remarkable enhancement under plasmonic excitation. Furthermore, FTIR-RAS and calculations analysis revealed that plasmonic relaxation mechanisms accelerate the Li+ environment modification process, mimicking the electrostatic configuration of Cs+, which facilitates a stabilized interaction between the active site (Ni3+) and OER intermediates, promoting rapid O-O bond formation. Our findings suggest that manipulating the cation's vicinity through plasmonic heating is a promising strategy for enhancing OER efficiency.
引用
收藏
页数:11
相关论文
共 68 条
[1]  
[Anonymous], Appl. Phys. A, V125
[2]   Gas-phase infrared spectrum of the protonated water dimer [J].
Asmis, KR ;
Pivonka, NL ;
Santambrogio, G ;
Brümmer, M ;
Kaposta, C ;
Neumark, DM ;
Wöste, L .
SCIENCE, 2003, 299 (5611) :1375-1377
[3]   Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J].
Ataka, K ;
Yotsuyanagi, T ;
Osawa, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10664-10672
[4]   STUDIES CONCERNING CHARGED NICKEL-HYDROXIDE ELECTRODES .7. INFLUENCE OF ALKALI CONCENTRATION ON ANODIC PEAK POSITIONS [J].
BARNARD, R ;
RANDELL, CF .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1983, 13 (01) :89-95
[5]   STUDIES CONCERNING CHARGED NICKEL-HYDROXIDE ELECTRODES .4. REVERSIBLE POTENTIALS IN LIOH, NAOH, RBOH AND CSOH [J].
BARNARD, R ;
RANDELL, CF ;
TYE, FL .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1981, 11 (04) :517-523
[6]   IR spectral assignments for the hydrated excess proton in liquid water [J].
Biswas, Rajib ;
Carpenter, William ;
Fournier, Joseph A. ;
Voth, Gregory A. ;
Tokmakoff, Andrei .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (15)
[7]  
Brand I., 2020, Application of Polarization Modulation Infrared Reflection Absorption Spectroscopy in Electrochemistry, P7
[8]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295
[9]  
Camargo C. H. P., 2021, PLASMONIC CATALYSIS
[10]   Enhanced Energy Storage of Fe3O4 Nanoparticles Embedded in N-Doped Graphene [J].
Chauque, Susana ;
Braga, Adriano H. ;
Goncalves, Renato, V ;
Rossi, Liane M. ;
Torresi, Roberto M. .
CHEMELECTROCHEM, 2020, 7 (06) :1456-1464