Artificial intelligence-based model to predict recurrence after local excision in T1 rectal cancer

被引:0
|
作者
Su, Jiarui [1 ,2 ,3 ]
Liu, Zhiyuan [1 ,2 ,3 ]
Li, Haiming [4 ]
Kang, Li [5 ]
Huang, Kaihong [6 ]
Wu, Jiawei [1 ,3 ,7 ]
Huang, Han [5 ]
Ling, Fei [8 ]
Yao, Xueqing [1 ,2 ,3 ,7 ,9 ]
Huang, Chengzhi [1 ]
机构
[1] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Gastrointestinal Surg,Dept Gen Surg, Guangzhou 510000, Peoples R China
[2] Southern Med Univ, Sch Clin Med 2, Guangzhou 510000, Peoples R China
[3] Ganzhou Hosp, Ganzhou Municipal Hosp, Guangdong Prov Peoples Hosp, Dept Gen Surg, Ganzhou 341000, Peoples R China
[4] South China Univ Technol, Sch Math, Guangzhou 510006, Peoples R China
[5] South China Univ Technol, Sch Software Engn, Guangzhou 510006, Peoples R China
[6] Sun Yat sen Univ, Sun Yat sen Mem Hosp, Dept Gastroenterol, Guangzhou 510000, Peoples R China
[7] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Guangdong Acad Med Sci, Guangzhou 510000, Peoples R China
[8] South China Univ Technol, Sch Biol & Biol Engn, Guangzhou 510006, Peoples R China
[9] South China Univ Technol, Sch Med, Guangzhou 510006, Peoples R China
来源
EJSO | 2025年 / 51卷 / 06期
基金
中国国家自然科学基金;
关键词
Artificial intelligence; T1 rectal cancer; Local excision; Pathological images; Recurrence; Prediction model; LONG-TERM OUTCOMES; PT1; COLORECTAL-CANCER; METASTASIS; RESECTION; SURGERY; RISK;
D O I
10.1016/j.ejso.2025.109717
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: According to current guideline, patients with resected specimens showing high-risk features are recommended additional surgery after local excision (LE) of T1 colorectal cancer, despite the low incidence of recurrence. However, surgical resection in patients with low rectal cancer (RC) is challenging and may compromise anal function, leading to a low quality of life. To reduce unnecessary surgical resection in these patients, we used artificial intelligence (AI) to develop and validate a prediction model for the risk of recurrence after LE. Materials and methods: We constructed an artificial neural network (ANN) to predict recurrence using pathological images from endoscopically or transanal surgically resected T1 RC specimens. Data were retrospectively obtained from two hospitals between 2001 and 2015. The model was constructed using 496 images obtained from the Guangdong Provincial People's Hospital (GDPH), and then validated using independent external datasets (150 images from Sun Yat-sen Memorial Hospital [SYSMH]) to verify its generalizability. Results: The ANN model yielded good discrimination, achieving areas under the receiver operating characteristic curves (AUC) of 0.979 in the training cohort (GDPH). The AUC for the validation cohort (SYSMH) was 0.978. More importantly, the AI-based prediction model avoided more than 34.9 % of unnecessary additional surgeries compared with the current US guideline in all enrolled patients. Conclusions: We propose a novel ANN model for the risk of recurrence prediction in patients with T1 RC to provide physicians and patients guidance for decisions after LE. Furthermore, this may lead to a reduction in unnecessary invasive surgeries in patients with T1 RC.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Treatment of Recurrence After Transanal Endoscopic Microsurgery (TEM) for T1 Rectal Cancer
    Doornebosch, Pascal G.
    Ferenschild, Floris T. J.
    de Wilt, Johannes H. W.
    Dawson, Imro
    Tetteroo, Geert W. M.
    de Graaf, Eelco J. R.
    DISEASES OF THE COLON & RECTUM, 2010, 53 (09) : 1234 - 1239
  • [22] Risk Factors for Rectal Cancer Recurrence after Local Excision of T1 Lesions from a Decade-Long Multicenter Retrospective Study
    Rudnicki, Yaron
    Goldberg, Nitzan
    Horesh, Nir
    Harbi, Assaf
    Lubianiker, Barak
    Green, Eraan
    Raveh, Guy
    Slavin, Moran
    Segev, Lior
    Gilshtein, Haim
    Barenboim, Alexander
    Wasserberg, Nir
    Khaikin, Marat
    Tulchinsky, Hagit
    Issa, Nidal
    Duek, Daniel
    Avital, Shmuel
    White, Ian
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (14)
  • [23] Risk of recurrence after local resection of T1 rectal cancer: a meta-analysis with meta-regression
    Dekkers, Nik
    Dang, Hao
    van der Kraan, Jolein
    le Cessie, Saskia
    Oldenburg, Philip P.
    Schoones, Jan W.
    Langers, Alexandra M. J.
    van Leerdam, Monique E.
    van Hooft, Jeanin E.
    Backes, Yara
    Levic, Katarina
    Meining, Alexander
    Saracco, Giorgio M.
    Holman, Fabian A.
    Peeters, Koen C. M. J.
    Moons, Leon M. G.
    Doornebosch, Pascal G.
    Hardwick, James C. H.
    Boonstra, Jurjen J.
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2022, 36 (12): : 9156 - 9168
  • [24] Initial local excision for clinical T1 rectal cancer showed comparable overall survival despite high local recurrence rate: a propensity-matched analysis
    Hyun, Jong Hee
    Alhanafy, Mohamed K.
    Park, Hyoung-Chul
    Park, Su Min
    Park, Sung-Chan
    Sohn, Dae Kyung
    Kim, Duck-Woo
    Kang, Sung-Bum
    Jeong, Seung-Yong
    Park, Kyu Joo
    Oh, Jae Hwan
    ANNALS OF COLOPROCTOLOGY, 2022, 38 (02) : 166 - 175
  • [25] Role of the artificial intelligence in the management of T1 colorectal cancer
    Ichimasa, Katsuro
    Kudo, Shin-ei
    Misawa, Masashi
    Takashina, Yuki
    Yeoh, Khay Guan
    Miyachi, Hideyuki
    DIGESTIVE AND LIVER DISEASE, 2024, 56 (07) : 1144 - 1147
  • [26] RETROSPECTIVE ANALYSIS OF THE PREDICTORS OF OUTCOME FOLLOWING LOCAL EXCISION FOR T1 RECTAL ADENOCARCINOMA
    Jayakrishnan, T.
    Abel, S.
    Reichstein, A.
    Fortunato, R.
    Nosik, S.
    Mccormick, J.
    Finley, G.
    Monga, D.
    Kirichenko, A., V
    Wegner, R. E.
    WORLD CANCER RESEARCH JOURNAL, 2021, 8
  • [27] Radical Surgery with Total Mesorectal Excision in Patients with T1 Rectal Cancer
    Kulu, Yakup
    Mueller-Stich, Beat P.
    Bruckner, Thomas
    Gehrig, Tobias
    Buechler, Markus W.
    Bergmann, Frank
    Ulrich, Alexis
    ANNALS OF SURGICAL ONCOLOGY, 2015, 22 (06) : 2051 - 2058
  • [28] Long-term results of local excision for T1 rectal carcinoma: the experience of two colorectal units
    Lebedyev, Alexander
    Tulchinsky, Hagit
    Rabau, Micha
    Klausner, Joseph M.
    Krausz, Michael
    Duek, Simon D.
    TECHNIQUES IN COLOPROCTOLOGY, 2009, 13 (03) : 231 - 236
  • [29] Risk of recurrence after local resection of T1 rectal cancer: a meta-analysis with meta-regression
    Nik Dekkers
    Hao Dang
    Jolein van der Kraan
    Saskia le Cessie
    Philip P. Oldenburg
    Jan W. Schoones
    Alexandra M. J. Langers
    Monique E. van Leerdam
    Jeanin E. van Hooft
    Yara Backes
    Katarina Levic
    Alexander Meining
    Giorgio M. Saracco
    Fabian A. Holman
    Koen C. M. J. Peeters
    Leon M. G. Moons
    Pascal G. Doornebosch
    James C. H. Hardwick
    Jurjen J. Boonstra
    Surgical Endoscopy, 2022, 36 : 9156 - 9168
  • [30] Radical vs. Local Excision in Rectal Carcinoma T1N0M0: Recurrence and Mortality Rates
    Khalid, Aisha
    Aloul, Zaina
    Chouhan, Hanumant
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (05)