Electrochemical energy storing performances of printed LaFeO3 coated with PEDOT: PSS for hybrid supercapacitors

被引:5
作者
Nair, Reshma [1 ]
Uppuluri, Kiranmai [2 ]
Paul, Febin [1 ]
Sirengo, Keith [3 ]
Szwagierczak, Dorota [2 ]
Pillai, Suresh C. [3 ]
Manjakkal, Libu [1 ]
机构
[1] Edinburgh Napier Univ, Sch Comp Engn & Built Environm, Merchiston Campus, Edinburgh EH10 5DT, Scotland
[2] Inst Microelect & Photon, Lukasiewicz Res Network, Krakow Div, Ul Zablocie 39, PL-30701 Krakow, Poland
[3] Atlantic Technol Univ, Fac Sci, ATU Sligo, Nanotechnol & Bioengn Res Grp,Environm Sci, Ash Lane, Sligo F91 YW50, Ireland
基金
爱尔兰科学基金会; 英国工程与自然科学研究理事会;
关键词
Hybrid supercapacitor; Screen printing; LaFeO3; Perovskites; PEDOT: PSS; Graphite; PEROVSKITE; FABRICATION; COMPOSITES; DESIGN;
D O I
10.1016/j.cej.2024.158781
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing advanced smart energy storage devices demanded new functional materials to store energy effectively and deliver power quickly. In this work, we studied the energy-storing performance of perovskite material, lanthanum ferrite (LaFeO3), prepared by the solid-state reaction method. The screen-printed LaFeO3 and graphite electrodes are used to develop hybrid supercapacitors (HSCs) with KOH electrolyte. Varying the sintering temperature of the LaFeO3 perovskite electrode (800 degrees C, 900 degrees C, and 1000 degrees C) leads to changes in the surface and crystalline properties, which impact the electrochemical properties and overall energy-storing performance of the HSC. The surface of the LaFeO3 electrode is modified with organic conducting polymer poly(3,4ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS), which enhances the energy storage of the HSC. The developed HSC based on LaFeO3, sintered at 1000 degrees C and surface modified with PEDOT: PSS, exhibited a specific capacitance of 12.007 mF center dot cm- 2 at a current density of 0.075 mA center dot cm- 2. This value is two times higher than (5.874 mF center dot cm- 2) without the surface modification of LaFeO3 at 1000 degrees C. This study provides valuable insights into the electrochemical performances of the ABO3 perovskite (LaFeO3) electrodes for the next generation of portable energy storage devices.
引用
收藏
页数:14
相关论文
共 58 条
[1]   The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications [J].
Arjun, Nadarajan ;
Pan, Guan-Tin ;
Yang, Thomas C. K. .
RESULTS IN PHYSICS, 2017, 7 :920-926
[2]   Interaction between Ultra-Trace Amount of Cesium and Oxides Studied by Total-Reflection X-Ray Photoelectron Spectroscopy [J].
Baba, Yuji ;
Shimoyama, Iwao ;
Hirao, Norie ;
Izumi, Toshinori .
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2015, 13 :417-421
[3]   Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator [J].
Beg, Mustehsan ;
Alcock, Keith M. ;
Mavelil, Achu Titus ;
O'Rourke, Dominic ;
Sun, Dongyang ;
Goh, Keng ;
Manjakkal, Libu ;
Yu, Hongnian .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (44) :51100-51109
[4]   Current understanding and future research directions at the onset of the next century of sintering science and technology [J].
Bordia, Rajendra K. ;
Kang, Suk-Joong L. ;
Olevsky, Eugene A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (06) :2314-2352
[5]   Enhancing Supercapacitor Electrochemical Performance with 3D Printed Cellular PEEK/MWCNT Electrodes Coated with PEDOT: PSS [J].
Chandran, Athul C. S. ;
Schneider, Johannes ;
Nair, Reshma ;
Bill, Buchanan ;
Gadegaard, Nikolaj ;
Hogg, Richard ;
Kumar, Shanmugam ;
Manjakkal, Libu .
ACS OMEGA, 2024, 9 (31) :33998-34007
[6]   Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3 [J].
Dixon, Charlotte A. L. ;
Kavanagh, Christopher M. ;
Knight, Kevin S. ;
Kockelmann, Winfried ;
Morrison, Finlay D. ;
Lightfoot, Philip .
JOURNAL OF SOLID STATE CHEMISTRY, 2015, 230 :337-342
[7]   Growth and surface modification of LaFeO3 thin films induced by reductive annealing [J].
Flynn, Brendan T. ;
Zhang, Kelvin H. L. ;
Shutthanandan, Vaithiyalingam ;
Varga, Tamas ;
Colby, Robert J. ;
Oleksak, Richard P. ;
Manandhar, Sandeep ;
Engelhard, Mark H. ;
Chambers, Scott A. ;
Henderson, Michael A. ;
Herman, Gregory S. ;
Thevuthasan, Suntharampillai .
APPLIED SURFACE SCIENCE, 2015, 330 :309-315
[8]   Perovskite materials as superior and powerful platforms for energy conversion and storage applications [J].
Goel, Priyanshu ;
Sundriyal, Shashank ;
Shrivastav, Vishal ;
Mishra, Sunita ;
Dubal, Deepak P. ;
Kim, Ki-Hyun ;
Deep, Akash .
NANO ENERGY, 2021, 80
[9]   Energy Storage in Nanomaterials - Capacitive Pseudocapacitive, or Battery-like? [J].
Gogotsi, Yury ;
Penner, Reginald M. .
ACS NANO, 2018, 12 (03) :2081-2083
[10]   Ceramic materials for energy conversion and storage: A perspective [J].
Guillon O. .
International Journal of Ceramic Engineering and Science, 2021, 3 (03) :100-104