Geodetic numbers of tensor product and lexicographic product of graphs

被引:0
作者
Chandrasekar, K. Raja [1 ]
机构
[1] Natl Inst Technol Puducherry, Dept Math, Pondicherry, India
关键词
Distance; geodesic; geodetic number; tensor product; lexicographic product; HULL NUMBERS; SETS;
D O I
10.1080/09728600.2024.2422535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A shortest u - v path between two vertices u and v of a graph G is a u - v geodesic of G. Let I[u, v] denote the set of all internal vertices lying on some u - v geodesic of G. For a nonempty subset S of V(G) , let I(S)=boolean OR u,v is an element of SI[u,v] . If I(S)=V(G) , then S is a geodetic set of G. The cardinality of a minimum geodetic set of G is the geodetic number of G and it is denoted by g(G). In this paper, the exact geodetic numbers of the product graphs TxKm and T degrees K<overline>m are obtained, where T is a tree, K<overline>m denotes the complement of the complete graph Km and, x and degrees denote the tensor product and lexicographic product $($also called the wreath product$)$ of graphs, respectively.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
[21]   The geodetic numbers of graphs and digraphs [J].
Changhong LU Department of MathematicsEast China Normal UniversityShanghai China Institute of Theoretical ComputingEast China Narnal UniversityShanghai China .
Science in China(Series A:Mathematics), 2007, (08) :1163-1172
[22]   The geodetic numbers of graphs and digraphs [J].
Lu, Chang-hong .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (08) :1163-1172
[23]   The geodetic numbers of graphs and digraphs [J].
Chang-hong Lu .
Science in China Series A: Mathematics, 2007, 50 :1163-1172
[24]   The Edge Geodetic Number of Product Graphs [J].
Anand, Bijo S. ;
Changat, Manoj ;
Chandran, S. V. Ullas .
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 :143-154
[25]   THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS [J].
Chellathurai, S. Robinson ;
Vijaya, S. Padma .
TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) :19-30
[26]   Strong Resolving Domination in the Lexicographic Product of Graphs [J].
Monsanto, Gerald B. ;
Acal, Penelyn L. ;
Rara, Helen M. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01) :363-372
[27]   Path-connectivity of lexicographic product graphs [J].
Mao, Yaping .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (01) :27-39
[28]   Game chromatic number of lexicographic product graphs [J].
Alagammai, R. ;
Vijayalakshmi, V. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) :216-220
[29]   Lexicographic product graphs Pm[Pn] are antimagic [J].
Ma, Wenhui ;
Dong, Guanghua ;
Lu, Yingyu ;
Wang, Ning .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (03) :271-283
[30]   On the super domination number of lexicographic product graphs [J].
Dettlaff, M. ;
Lemanska, M. ;
Rodriguez-Velazquez, J. A. ;
Zuazua, R. .
DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) :118-129