Dynamical accretion flows ALMAGAL: Flows along filamentary structures in high-mass star-forming clusters

被引:0
|
作者
Wells, M. R. A. [1 ]
Beuther, H. [1 ]
Molinari, S. [2 ]
Schilke, P. [3 ]
Battersby, C. [4 ]
Ho, P. [5 ,6 ]
Sanchez-Monge, A. [7 ,8 ]
Jones, B. [3 ]
Scheuck, M. B. [1 ]
Syed, J. [1 ]
Gieser, C. [40 ]
Kuiper, R. [26 ]
Elia, D. [2 ]
Coletta, A. [2 ,25 ]
Traficante, A. [2 ]
Wallace, J. [4 ]
Rigby, A. J. [41 ]
Klessen, R. S. [9 ,10 ]
Zhang, Q. [11 ]
Walch, S. [3 ,12 ]
Beltran, M. T. [13 ]
Tang, Y. [5 ]
Fuller, G. A. [3 ,14 ,15 ]
Lis, D. C. [16 ]
Moeller, T. [3 ]
van der Tak, F. [17 ,18 ]
Klaassen, P. D. [19 ]
Clarke, S. D. [3 ,5 ]
Moscadelli, L. [13 ]
Mininni, C. [2 ]
Zinnecker, H. [39 ]
Maruccia, Y. [2 ]
Pezzuto, S. [2 ]
Benedettini, M. [2 ]
Soler, J. D. [2 ]
Brogan, C. L. [20 ]
Avison, A. [14 ,15 ,21 ,22 ]
Sanhueza, P. [23 ,24 ]
Schisano, E. [2 ]
Liu, T. [27 ]
Fontani, F. [13 ,28 ,29 ]
Rygl, K. L. J. [30 ,31 ]
Wyrowski, F. [32 ]
Bally, J. [33 ]
Walker, D. L. [21 ]
Ahmadi, A. [34 ]
Koch, P. [5 ]
Merello, M. [35 ]
Law, C. Y. [36 ,37 ]
Testi, L. [13 ,38 ]
机构
[1] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[2] INAF Ist Astrofis & Planetol Spaziale, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[3] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany
[4] Univ Connecticut, Dept Phys, 2152 Hillside Rd,Unit 3046, Storrs, CT 06269 USA
[5] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan
[6] East Asian Observ, 660 N Aohoku Pl, Hilo, HI 96720 USA
[7] CSIC, Inst Ciencies Espai ICE, Can Magrans S N, E-08193 Barcelona, Spain
[8] Inst Estudis Espacials Catalunya IEEC, Barcelona, Spain
[9] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, Heidelberg, Germany
[10] Heidelberg Univ, Interdisziplinares Zentrum Wissenschaftl Rechnen, D-69120 Heidelberg, Germany
[11] Harvard Smithsonian Ctr Astrophys, 160 Garden St, Cambridge, MA 02420 USA
[12] Univ Cologne, Ctr Data & Simulat Sci, Cologne, Germany
[13] INAF Osservatorio Astrofisico Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[14] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 3PL, England
[15] Univ Manchester, UK ALMA Reg Ctr Node, Sch Phys & Astron, Manchester M13 3PL, England
[16] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[17] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands
[18] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands
[19] Royal Observ Edinburgh, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Scotland
[20] Natl Radio Astron Observ NRAO, 520 Edgemont Rd, Charlottesville, VA 22903 USA
[21] UK ALMA Reg Ctr Node, Manchester M13 9PL, England
[22] Jodrell Bank, SKA Observ, Lower Withington SK11 9FT, England
[23] Natl Inst Nat Sci, Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
[24] SOKENDAI Grad Univ Adv Studies, Dept Astron Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
[25] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[26] Univ Duisburg Essen, Fac Phys, Duisburg, Germany
[27] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
[28] Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany
[29] PSL Res Univ, Sorbonne Univ, CNRS, LERMA,Observ Paris, F-92190 Meudon, France
[30] INAF Ist Radioastron, Via P Gobetti 101, I-40129 Bologna, Italy
[31] Italian ALMA Reg Ctr, Via P Gobetti 101, I-40129 Bologna, Italy
[32] Max Planck Inst Radioastron MPIfR, Auf dem Hugel 69, D-53121 Bonn, Germany
[33] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80389 USA
[34] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[35] Univ Chile, Dept Astron, Santiago, Chile
[36] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[37] Chalmers Univ Technol, Dept Space Earth & Environm, SE-412 96 Gothenburg, Sweden
[38] CNAF, Viale Berti Pichat 6 2, Bologna, Italy
[39] Univ Autonoma Chile, Nucl Astroquim & Astrofis, Avda Pedro de Valdivia 425, Santiago 7500912, Chile
[40] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85749 Garching, Germany
[41] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, England
基金
国家重点研发计划; 中国国家自然科学基金; 欧洲研究理事会; 美国国家航空航天局;
关键词
accretion; accretion disks; stars: evolution; stars: massive; COMPACT SOURCE CATALOG; GALACTIC PLANE; HOT CORES; FRAGMENTATION; GAL; CLUMPS; DUST; PROTOSTARS; PROGRAM; ASTROPY;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Investigating the flow of material along filamentary structures towards the central core can help provide insights into high-mass star formation and evolution. Aims. Our main motivation is to answer the question of what the properties of accretion flows are in star-forming clusters. We used data from the ALMA Evolutionary Study of High Mass Protocluster Formation in the Galaxy (ALMAGAL) survey to study 100 ALMAGAL regions at a similar to 1 '' resolution, located between similar to 2 and 6 kpc. Methods. Making use of the ALMAGAL similar to 1.3 mm line and continuum data, we estimated flow rates onto individual cores. We focus specifically on flow rates along filamentary structures associated with these cores. Our primary analysis is centered around position velocity cuts in H2CO (3(0, 3)-2(0, 2)), which allow us to measure the velocity fields surrounding these cores. Combining this work with column density estimates, we were able to derive the flow rates along the extended filamentary structures associated with cores in these regions. Results. We selected a sample of 100 ALMAGAL regions, covering four evolutionary stages from quiescent to protostellar, young stellar objects (YSOs), and HII regions (25 each). Using a dendrogram and line analysis, we identify a final sample of 182 cores in 87 regions. In this paper, we present 728 flow rates for our sample (4 per core), analysed in the context of evolutionary stage, distance from the core, and core mass. On average, for the whole sample, we derived flow rates on the order of similar to 10(-4) M-circle dot yr(-1) with estimated uncertainties of +/- 50%. We see increasing differences in the values among evolutionary stages, most notably between the less evolved (quiescent and protostellar) and more evolved (YSO and HII region) sources and we also see an increasing trend as we move further away from the centre of these cores. We also find a clear relationship between the calculated flow rates and core masses similar to M-2/3, which is in line with the result expected from the tidal-lobe accretion mechanism. The significance of these relationships is tested with Kolmogorov-Smirnov and Mann-Whitney U tests. Conclusions. Overall, we see an increasing trend in the relationships between the flow rate and the three investigated parameters, namely: evolutionary stage, distance from the core, and core mass.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Inversely synthesizing the core mass function of high-mass star-forming regions from the canonical initial mass function
    Zhou, J. W.
    Kroupa, Pavel
    Dib, Sami
    ASTRONOMY & ASTROPHYSICS, 2025, 695
  • [32] Massive outflows driven by magnetic effects in star-forming clouds with high mass accretion rates
    Matsushita, Yuko
    Machida, Masahiro N.
    Sakurai, Yuya
    Hosokawa, Takashi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (01) : 1026 - 1049
  • [33] A Hi-GAL study of the high-mass star-forming region G29.96-0.02
    Beltran, M. T.
    Olmi, L.
    Cesaroni, R.
    Schisano, E.
    Elia, D.
    Molinari, S.
    Di Giorgio, A. M.
    Kirk, J. M.
    Mottram, J. C.
    Pestalozzi, M.
    Testi, L.
    Thompson, M. A.
    ASTRONOMY & ASTROPHYSICS, 2013, 552
  • [34] H2D+ IN THE HIGH-MASS STAR-FORMING REGION CYGNUS X
    Pillai, T.
    Caselli, P.
    Kauffmann, J.
    Zhang, Q.
    Thompson, M. A.
    Lis, D. C.
    ASTROPHYSICAL JOURNAL, 2012, 751 (02)
  • [35] DC3N observations towards high-mass star-forming regions
    Rivilla, V. M.
    Colzi, L.
    Fontani, F.
    Melosso, M.
    Caselli, P.
    Bizzocchi, L.
    Tamassia, F.
    Dore, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (02) : 1990 - 1999
  • [36] Modeling the Far-infrared Polarization Spectrum of a High-mass Star-forming Cloud
    Lee, Dennis
    Chen, Che-Yu
    Novak, Giles
    Chuss, David T.
    Cox, Erin G.
    Karpovich, Kaitlyn
    Ashton, Peter
    Berthoud, Marc
    Li, Zhi-Yun
    Michail, Joseph M.
    ASTROPHYSICAL JOURNAL, 2024, 972 (01)
  • [37] An Isothermal Outflow in High-mass Star-forming Region G240.31+0.07
    Liu, Junhao
    Qiu, Keping
    Wyrowski, Friedrich
    Menten, Karl
    Guesten, Rolf
    Cao, Yue
    Wang, Yuwei
    ASTROPHYSICAL JOURNAL, 2018, 860 (02)
  • [38] Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites
    Hill, T.
    Motte, F.
    Didelon, P.
    Bontemps, S.
    Minier, V.
    Hennemann, M.
    Schneider, N.
    Andre, Ph.
    Men'shchikov, A.
    Anderson, L. D.
    Arzoumanian, D.
    Bernard, J. -P.
    di Francesco, J.
    Elia, D.
    Giannini, T.
    Griffin, M. J.
    Koenyves, V.
    Kirk, J.
    Marston, A. P.
    Martin, P. G.
    Molinari, S.
    Luong, Q. Nguyen
    Peretto, N.
    Pezzuto, S.
    Roussel, H.
    Sauvage, M.
    Sousbie, T.
    Testi, L.
    Ward-Thompson, D.
    White, G. J.
    Wilson, C. D.
    Zavagno, A.
    ASTRONOMY & ASTROPHYSICS, 2011, 533
  • [39] A High-mass, Young Star-forming Core Escaping from Its Parental Filament
    Ren, Zhiyuan
    Chen, Xi
    Liu, Tie
    Mannfors, Emma
    Bronfman, Leonardo
    Xu, Fengwei
    Feng, Siyi
    Liu, Hongli
    Meng, Fanyi
    Stutz, Amelia M.
    Li, Shanghuo
    Lee, Chang Won
    Wang, Ke
    Zhou, Jianwen
    Li, Di
    Wang, Chen
    Eswaraiah, Chakali
    Tej, Anandmayee
    Chen, Long-Fei
    Shi, Hui
    ASTROPHYSICAL JOURNAL, 2023, 955 (02)
  • [40] Gas kinematics in high-mass star-forming regions from the Perseus spiral arm
    Kirsanova, M. S.
    Sobolev, A. M.
    Thomasson, M.
    ASTRONOMY REPORTS, 2017, 61 (09) : 760 - 774