On nonlinear iterated function systems with overlaps

被引:0
作者
Solomyak, Boris [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
non-linear iterated function system; overlap; dimension drop; PARABOLIC IFS; SELF; CONJECTURE; DIMENSIONS; SETS;
D O I
10.4171/JFG/150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an example of an iterated function system on the line, consisting of linear fractional transformations, such that two of the maps share a fixed points, but the dimension of the attractor equals the conformal dimension, so that there is no "dimension drop".
引用
收藏
页码:373 / 387
页数:15
相关论文
共 21 条
[1]  
Barany B., 2023, Math. Surveys Monogr., V276
[2]  
Bowen Rufus., 1979, PUBL MATH LINST HAUT, V50, P11, DOI [10.1007/BF02684767, DOI 10.1007/BF02684767]
[3]   On the undecidability of freeness of matrix semigroups [J].
Cassaigne, J ;
Harju, T ;
Karhumaki, J .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1999, 9 (3-4) :295-305
[4]  
Christodoulou A, 2020, Arxiv, DOI arXiv:2007.06430
[5]  
Falconer K.J., 1997, TECHNIQUES FRACTAL G, V1st
[6]   DIMENSIONS AND MEASURES OF QUASI SELF-SIMILAR SETS [J].
FALCONER, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (02) :543-554
[7]  
Gamburd A., 1999, J EUR MATH SOC, V1, P51
[8]  
Hochman M, 2017, INVENT MATH, V210, P815, DOI 10.1007/s00222-017-0740-6
[9]   On self-similar sets with overlaps and inverse theorems for entropy [J].
Hochman, Michael .
ANNALS OF MATHEMATICS, 2014, 180 (02) :773-822
[10]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747