Genome-wide identification and expression analysis of bHLH gene family revealed their potential roles in abiotic stress response, anthocyanin biosynthesis and trichome formation in Glycyrrhiza uralensis

被引:0
|
作者
Ding, Guohua [1 ]
Shi, Yanping [2 ]
Xie, Kerui [1 ]
Li, Hongbin [2 ]
Xiao, Guanghui [1 ]
机构
[1] Shaanxi Normal Univ, Coll Life Sci, Xian, Peoples R China
[2] Shihezi Univ, Coll Life Sci, Key Lab Xinjiang Phytomed Resource & Utilizat, Minist Educ, Shihezi, Peoples R China
来源
关键词
<italic>bHLH</italic> gene family; licorice; evolutionary analyses; expression patterns; stress responses; phytohormones; TRANSCRIPTION FACTOR NETWORK; ARABIDOPSIS; PROTEIN; EVOLUTIONARY; ACCUMULATION; ALIGNMENT; DROUGHT; BINDING; MYC; PROANTHOCYANIDIN;
D O I
10.3389/fpls.2024.1485757
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Licorice stands out as an exceptional medicinal resource with a long history of application, attributed to its substantial pharmacological potential. The basic helix-loop-helix (bHLH) transcription factors (TFs) gene family, being the second-largest in plants, is vital for plant development and adapting to environmental shifts. Despite this, the comprehensive characteristics of licorice bHLH gene family are not well-documented.Results In this study, a detailed and thorough genome-wide identification and expression analysis of Glycyrrhiza uralensis bHLH gene family was carried out, resulting in the identification of 139 licorice bHLH members. Our duplication analysis highlighted the significant contribution of segmental duplications to the expansion of G. uralensis bHLH genes, with GubHLH genes experiencing negative selection throughout evolution. It was discovered that GubHLH64 and GubHLH38 could be importantly linked to the licorice trichome initiation and anthocyanin biosynthesis and GubHLH64 was also involved in the abiotic stress response. Additionally, certain subfamily III (d+e) GubHLH members could be implicated in the licorice drought response. GubHLH108, GubHLH109, and GubHLH116 were suggested to form a tightly related cluster, initiating transcriptional responses via JA signaling pathway.Discussion In summary, our findings furnish a foundational understanding for future investigations of GubHLH gene functions and regulation mechanisms, shedding light on the potential applications of licorice in medicine and agriculture.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Genome-Wide Characterization and Expression Analysis of bZIP Gene Family Under Abiotic Stress in Glycyrrhiza uralensis
    Han, Yuxuan
    Hou, Zhuoni
    He, Qiuling
    Zhang, Xuemin
    Yan, Kaijing
    Han, Ruilian
    Liang, Zongsuo
    FRONTIERS IN GENETICS, 2021, 12
  • [2] WRKY gene family of Licorice (Glycyrrhiza uralensis): identification and expression analysis in response to abiotic stress
    Li, Rui
    Gao, Jing
    Wang, Nan
    Yan, Yonggang
    Zhang, Gang
    Yan, Jiakun
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2023, 37 (01)
  • [3] Genome-Wide Identification and Expression Analysis of the NAC Gene Family in Alfalfa Revealed Its Potential Roles in Response to Multiple Abiotic Stresses
    He, Fei
    Zhang, Lixia
    Zhao, Guoqing
    Kang, Junmei
    Long, Ruicai
    Li, Mingna
    Yang, Qingchuan
    Chen, Lin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [4] Systematic identification and expression analysis of bHLH gene family reveal their relevance to abiotic stress response and anthocyanin biosynthesis in sweetpotato
    Guo, Fen
    Meng, Xiaoqing
    Hong, Haiting
    Liu, Siyuan
    Yu, Jing
    Huang, Can
    Dong, Tingting
    Geng, Huixue
    Li, Zongyun
    Zhu, Mingku
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [5] Systematic identification and expression analysis of bHLH gene family reveal their relevance to abiotic stress response and anthocyanin biosynthesis in sweetpotato
    Fen Guo
    Xiaoqing Meng
    Haiting Hong
    Siyuan Liu
    Jing Yu
    Can Huang
    Tingting Dong
    Huixue Geng
    Zongyun Li
    Mingku Zhu
    BMC Plant Biology, 24
  • [6] Genome-wide identification and expression analysis of the bHLH gene family in passion fruit (Passiflora edulis) and its response to abiotic stress
    Liang, Jianxiang
    Fang, Yunying
    An, Chang
    Yao, Yuanbin
    Wang, Xiaomei
    Zhang, Wenbin
    Liu, Ruoyu
    Wang, Lulu
    Aslam, Mohammad
    Cheng, Yan
    Qin, Yuan
    Zheng, Ping
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 225 : 389 - 403
  • [7] Genome-wide identification of Glycyrrhiza uralensis Fisch. WRKY Gene family and expression analysis under salt stress
    Xiao, Jiancai
    Gao, Pengchao
    Yan, Binbin
    Zhao, Yuping
    Nan, Tiegui
    Kang, Chuanzhi
    Lyv, Chaogeng
    Sun, Kai
    Zhang, Lei
    Xiao, Jing
    Zhang, Yan
    Guo, Lanping
    Wan, Xiufu
    PLANT STRESS, 2024, 13
  • [8] Genome-wide identification and expression analysis of the KCS gene family in soybean (Glycine max) reveal their potential roles in response to abiotic stress
    Gong, Yujie
    Wang, Deying
    Xie, Haojie
    Zhao, Zewei
    Chen, Yuyue
    Zhang, Dongxue
    Jiao, Yexuan
    Shi, Mengmeng
    Lv, Peng
    Sha, Qi
    Yang, Jing
    Chu, Pengfei
    Sun, Yongwang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [9] Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica
    Liu, Quangang
    Wen, Jiaxing
    Wang, Shipeng
    Chen, Jianhua
    Sun, Yongqiang
    Liu, Qingbai
    Li, Xi
    Dong, Shengjun
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [10] Genome-Wide Identification of MsICE Gene Family in Medicago sativa and Expression Analysis of the Response to Abiotic Stress
    Wang, Baiji
    Liu, Qianning
    Xu, Wen
    Yuan, Yuying
    Tuluhong, Muzhapaer
    Yu, Jinqiu
    Cui, Guowen
    AGRONOMY-BASEL, 2024, 14 (09):