Direct Observation of Josephson Oscillations in DC-Biased Transition-Edge Sensors

被引:0
作者
Jaeckel, Felix T. [1 ]
Ambarish, Conjeepuram V. [1 ]
Banes, Ayshea [1 ]
Duane, Haiyue [1 ]
Lesnjak, Natalie [1 ]
Marino, Miriam M. [1 ]
Mccammon, Dan
Nowak, Sophia [1 ]
Roy, Avirup [1 ]
Xu, Sixing [1 ]
Yan, Jiacheng [1 ]
Adams, Joseph S. [2 ]
Bandler, Simon R. [2 ]
Chervenak, James [2 ]
Cumbee, Renata S. [2 ]
Finkbeiner, Fred M. [2 ]
Fuhrman, Joshua [2 ]
Hull, Samuel V. [2 ]
Kelley, Richard [2 ]
Kilbourne, Caroline A.
Porter, Frederick [2 ]
Sakai, Kazuhiro [2 ]
Smith, Stephen J. [2 ]
Wakeham, Nicholas A. [2 ]
Wassell, Edward J. [2 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
Microcalorimeters; transition edge sensors; X-ray detectors; calibration; Josephson oscillations; Josephson junction; excess noise; astrophysics;
D O I
10.1109/TASC.2025.3533468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It has long been recognized that weak-link effects play an important role in transition edge sensors (Sadleir et al., 2010 and Sadleir et al., 2011), especially when the intrinsic transition temperature of the leads is much higher than that of the device itself. The weak-link physics has also been identified as an important complication if the TES is read-out under MHz-range AC bias for multiplexing purposes (Gottardi et al., 2014). More recently, it has been proposed that the commonly observed "excess" Johnson noise could also be explained as a white Johnson noise component that is mixed down into the signal band from higher frequencies via Josephson oscillations on a non-linear I-V relation (Gottardi et al., 2021 and Wessels et al., 2021). In recent experiments with small scale Mo/Au (50 $\mu$m length, 15 mu m wide) TES devices with Nb leads (fabricated at GSFC) with a small DC bias applied, we have been able to directly observe Josephson oscillations over a kHz to MHz frequency range. The spectrum of the oscillations is well described by a simple damped oscillator model, with its center frequency scaling in direct proportion to the voltage across the TES. The second harmonic is also observed at small bias. If nothing else, we show that the Josephson oscillations provide a straightforward way to determine the value of the shunt-resistor with accuracy of 10(-4 )or better, as well as the offset voltage of the bias circuit. This is complementary to our previous work demonstrating that Shapiro steps in the IV curve induced by AC magnetic fields can be used for shunt resistor calibration (Zhou et al., 2018). Further work will be needed to determine if this effect can be observed in larger TES or those with relatively low-T-c contacts, where Shapiro steps are too weak to observe. It remains to be seen whether additional insights on the mixed-down Johnson noise can be obtained from a physics-based model of the weak-link.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetry [J].
D. T. Chuss ;
C. L. Bennett ;
N. Costen ;
E. Crowe ;
K. Denis ;
J. R. Eimer ;
N. Lourie ;
T. A. Marriage ;
S. H. Moseley ;
K. Rostem ;
T. R. Stevenson ;
D. Towner ;
K. U-Yen ;
G. Voellmer ;
E. J. Wollack ;
L. Zeng .
Journal of Low Temperature Physics, 2012, 167 :923-928
[42]   Normal metal-superconductor decoupling as a source of thermal fluctuation noise in transition-edge sensors [J].
Kinnunen, K. M. ;
Palosaari, M. R. J. ;
Maasilta, I. J. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (03)
[43]   Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy [J].
Ullom, Joel N. ;
Bennett, Douglas A. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2015, 28 (08)
[44]   Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors [J].
Faramarzi, F. ;
De Haan, T. ;
Kusaka, A. ;
Lee, A. ;
Neuhauser, B. ;
Plambeck, R. ;
Raum, C. ;
Suzuki, A. ;
Westbrook, B. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (3-4) :498-504
[45]   Iridium thin films deposited via pulsed laser deposition for future applications as transition-edge sensors [J].
Galeazzi, M ;
Chen, C ;
Cohn, JL ;
Gundersen, JO .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 520 (1-3) :293-295
[46]   Transition Edge Sensors for DC Operation and Low Magnetic Field Sensitivity [J].
de Wit, M. ;
Gottardi, L. ;
Nagayoshi, K. ;
Taralli, E. ;
Vaccaro, D. ;
Ravensberg, K. ;
Bruijn, M. P. ;
van der Kuur, J. ;
Gao, J. R. ;
den Herder, J. W. A. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2025, 35 (05)
[47]   Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors [J].
F. Faramarzi ;
T. De Haan ;
A. Kusaka ;
A. Lee ;
B. Neuhauser ;
R. Plambeck ;
C. Raum ;
A. Suzuki ;
B. Westbrook .
Journal of Low Temperature Physics, 2018, 193 :498-504
[48]   Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Photonic Microstructures based on Semiconductor Quantum Dots [J].
Schmidt, Marco ;
von Helversen, Martin ;
Schlottmann, Elisabeth ;
Lopez, Marco ;
Gericke, Fabian ;
Schulze, Jan-Hindrik ;
Strittmatter, Andre ;
Schneider, Christian ;
Kueck, Stefan ;
Hoefling, Sven ;
Heindel, Tobias ;
Beyer, Joern ;
Reitzenstein, Stephan .
ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION XII, 2019, 10933
[49]   Microfabrication of Transition-Edge Sensor Arrays of Microcalorimeters with 163Ho for Direct Neutrino Mass Measurements with HOLMES [J].
Orlando, A. ;
Ceriale, V. ;
Ceruti, G. ;
De Gerone, M. ;
Faverzani, M. ;
Ferri, E. ;
Gallucci, G. ;
Giachero, A. ;
Nucciotti, A. ;
Puiu, A. ;
Schmidt, D. ;
Swetz, D. ;
Ullom, J. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (5-6) :771-776
[50]   Microfabrication of Transition-Edge Sensor Arrays of Microcalorimeters with 163Ho for Direct Neutrino Mass Measurements with HOLMES [J].
A. Orlando ;
V. Ceriale ;
G. Ceruti ;
M. De Gerone ;
M. Faverzani ;
E. Ferri ;
G. Gallucci ;
A. Giachero ;
A. Nucciotti ;
A. Puiu ;
D. Schmidt ;
D. Swetz ;
J. Ullom .
Journal of Low Temperature Physics, 2018, 193 :771-776