Boosting vapor flux in osmotic distillation: A comprehensive evaluation of operating conditions and membrane properties

被引:0
作者
Zhou, Longxi [1 ]
He, Di [1 ]
Wang, Zhangxin [1 ]
Chen, Yuanmiaoliang [1 ]
机构
[1] Guangdong Univ Technol, Guangdong Basic Res Ctr Excellence Ecol Secur & Gr, Key Lab City Cluster Environm Safety & Green Dev, Minist Educ,Sch Ecol Environm & Resources, Guangzhou 510006, Peoples R China
来源
CHEMICAL ENGINEERING JOURNAL ADVANCES | 2025年 / 22卷
基金
中国国家自然科学基金;
关键词
Desalination for seawater electrolysis; Osmotic distillation; Membrane property improvement; Operating condition optimization; DESALINATION PERFORMANCE; MASS-TRANSFER; TRANSPORT; PARAMETERS;
D O I
10.1016/j.ceja.2025.100719
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Osmotic distillation (OD) presents a promising technique for desalination in seawater electrolysis, but its effectiveness is hindered by low vapor flux and limited operational efficiency. This study employs a theoretical model to evaluate how operating conditions and membrane properties impact OD vapor flux. For conventional membranes, optimizing parameters mitigates concentration and temperature polarization but provides only modest increase in vapor flux, as the membrane contributes the majority of mass transfer resistance. With 0.6 M NaCl/3.5 M K2CO3 as feed/draw solutions, regardless of operating condition, the vapor flux of conventional membranes cannot exceed 0.94 kg m-2 h-1. In contrast, improving membrane properties, which leads to vapor permeability (Bm) enhancement, offers significantly more potential for increasing vapor flux. However, this improvement must be paired with an increased thermal conduction coefficient (Km,d) to avoid severe temperature polarization. Furthermore, our modeling results further indicate that operating condition optimization has a markedly larger impact on advanced membranes with improved Bm and Km,d than conventional membranes (60.7 % vs. 8.3 % vapor flux increase). These findings underscore the necessity for research efforts to prioritize the advancement of membrane design, while subsequent studies can focus on optimizing operating conditions alongside these improved membranes. This approach will significantly improve OD vapor flux and provide critical insights for the future development of OD technology, thereby facilitating its application in seawater electrolysis.
引用
收藏
页数:8
相关论文
共 62 条
  • [31] Courel M., Dornier M., Rios G.M., Reynes M., Modelling of water transport in osmotic distillation using asymmetric membrane, J. Membr. Sci., 173, pp. 107-122, (2000)
  • [32] Lou J., Computational fluid dynamics simulations of polarization phenomena in direct contact membrane distillation, J. Membr. Sci., (2019)
  • [33] Jikazana A., Campo P., McAdam E.J., Hydrodynamics (Reynolds number) determine scaling, nucleation and crystal growth kinetics in membrane distillation crystallisation, J. Membr. Sci., 685, (2023)
  • [34] Tosun I., Modelling in Transport phenomena: a Conceptual Approach, (2002)
  • [35] Babu B.R., Rastogi N.K., Raghavarao K.S.M.S., Concentration and temperature polarization effects during osmotic membrane distillation, J. Membr. Sci., 322, pp. 146-153, (2008)
  • [36] Karanikola V., Corral A.F., Jiang H., Saez A.E., Ela W.P., Arnold R.G., Effects of membrane structure and operational variables on membrane distillation performance, J. Membr. Sci., 524, pp. 87-96, (2017)
  • [37] Haynes W.M., Lide D.R., Bruno T.J., Handbook of Chemistry and Physics, (2014)
  • [38] Bui A.V., Nguyen H.M., Joachim M., Characterisation of the polarisations in osmotic distillation of glucose solutions in hollow fibre module, J. Food Eng., 68, pp. 391-402, (2005)
  • [39] Nagaraj N., Patil G., Babu B.R., Hebbar U.H., Raghavarao K.S.M.S., Nene S., Mass transfer in osmotic membrane distillation, J. Membr. Sci., 268, pp. 48-56, (2006)
  • [40] Cassol G.S., Shang C., An A.K., Khanzada N.K., Ciucci F., Manzotti A., Westerhoff P., Song Y., Ling L., Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system, Nat. Commun., 15, (2024)