Boosting vapor flux in osmotic distillation: A comprehensive evaluation of operating conditions and membrane properties

被引:0
作者
Zhou, Longxi [1 ]
He, Di [1 ]
Wang, Zhangxin [1 ]
Chen, Yuanmiaoliang [1 ]
机构
[1] Guangdong Univ Technol, Guangdong Basic Res Ctr Excellence Ecol Secur & Gr, Key Lab City Cluster Environm Safety & Green Dev, Minist Educ,Sch Ecol Environm & Resources, Guangzhou 510006, Peoples R China
来源
CHEMICAL ENGINEERING JOURNAL ADVANCES | 2025年 / 22卷
基金
中国国家自然科学基金;
关键词
Desalination for seawater electrolysis; Osmotic distillation; Membrane property improvement; Operating condition optimization; DESALINATION PERFORMANCE; MASS-TRANSFER; TRANSPORT; PARAMETERS;
D O I
10.1016/j.ceja.2025.100719
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Osmotic distillation (OD) presents a promising technique for desalination in seawater electrolysis, but its effectiveness is hindered by low vapor flux and limited operational efficiency. This study employs a theoretical model to evaluate how operating conditions and membrane properties impact OD vapor flux. For conventional membranes, optimizing parameters mitigates concentration and temperature polarization but provides only modest increase in vapor flux, as the membrane contributes the majority of mass transfer resistance. With 0.6 M NaCl/3.5 M K2CO3 as feed/draw solutions, regardless of operating condition, the vapor flux of conventional membranes cannot exceed 0.94 kg m-2 h-1. In contrast, improving membrane properties, which leads to vapor permeability (Bm) enhancement, offers significantly more potential for increasing vapor flux. However, this improvement must be paired with an increased thermal conduction coefficient (Km,d) to avoid severe temperature polarization. Furthermore, our modeling results further indicate that operating condition optimization has a markedly larger impact on advanced membranes with improved Bm and Km,d than conventional membranes (60.7 % vs. 8.3 % vapor flux increase). These findings underscore the necessity for research efforts to prioritize the advancement of membrane design, while subsequent studies can focus on optimizing operating conditions alongside these improved membranes. This approach will significantly improve OD vapor flux and provide critical insights for the future development of OD technology, thereby facilitating its application in seawater electrolysis.
引用
收藏
页数:8
相关论文
共 62 条
  • [1] Achakulwisut P., Erickson P., Guivarch C., Schaeffer R., Brutschin E., Pye S., Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions, Nat. Commun., 14, (2023)
  • [2] Vogt E.T.C., Weckhuysen B.M., The refinery of the future, Nature, 629, pp. 295-306, (2024)
  • [3] Dresselhaus M.S., Thomas I.L., Alternative energy technologies, Nature, 414, pp. 332-337, (2001)
  • [4] He W., Li X., Tang C., Zhou S., Lu X., Li W., Li X., Zeng X., Dong P., Zhang Y., Zhang Q., Materials design and system innovation for direct and indirect seawater electrolysis, ACS Nano, 17, pp. 22227-22239, (2023)
  • [5] Veroneau S.S., Nocera D.G., Continuous electrochemical water splitting from natural water sources via forward osmosis, Proceedings of the National Academy of Sciences, 118, (2021)
  • [6] Guo J., Zheng Y., Hu Z., Zheng C., Mao J., Du K., Jaroniec M., Qiao S.-Z., Ling T., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst, Nat. Energy, 8, pp. 264-272, (2023)
  • [7] Marin D.H., Perryman J.T., Hubert M.A., Lindquist G.A., Chen L., Aleman A.M., Kamat G.A., Niemann V.A., Stevens M.B., Regmi Y.N., Boettcher S.W., Nielander A.C., Jaramillo T.F., Hydrogen production with seawater-resilient bipolar membrane electrolyzers, Joule, 7, pp. 765-781, (2023)
  • [8] Tonelli D., Rosa L., Gabrielli P., Caldeira K., Parente A., Contino F., Global land and water limits to electrolytic hydrogen production using wind and solar resources, Nat. Commun., 14, (2023)
  • [9] Guo J., Zhang Y., Zavabeti A., Chen K., Guo Y., Hu G., Fan X., Li G.K., Hydrogen production from the air, Nat. Commun., 13, (2022)
  • [10] Shih A.J., Monteiro M.C.O., Dattila F., Pavesi D., Philips M., da Silva A.H.M., Vos R.E., Ojha K., Park S., van der Heijden O., Marcandalli G., Goyal A., Villalba M., Chen X., Gunasooriya G.T.K.K., McCrum I., Mom R., Lopez N., Koper M.T.M., Water electrolysis, Nat. Rev. Methods Primers, 2, (2022)