Effects of Li doping on the dehydrogenation properties of MgH2(110) surface: Insights from first-principles Calculations

被引:0
作者
Jiang, Rui [1 ,2 ]
Wang, Jianchuan [1 ]
Han, Bo [1 ]
Du, Yong [1 ]
Sun, Lixian [3 ]
Liu, Shuhong [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Fudan Univ, Inst Elect Light Sources, Sch Informat Sci & Technol, Shanghai 200433, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
关键词
Hydrogen storage materials; MgH2; First-principles calculation; Doping; Hydrogen desorption; HYDROGEN STORAGE PROPERTIES; SORPTION KINETICS; AB-INITIO; MGH2; MAGNESIUM; DESORPTION; TI; SUBSTITUTION; FE; NI;
D O I
10.1016/j.ijhydene.2024.12.186
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Elemental doping is commonly used to improve the dehydrogenation thermodynamic and kinetic properties of MgH2. Compared with transition metals, Li doping can keep the hydrogen gravimetric density of MgH2. In this work, we present the density functional theory calculations of MgH2(110) surface to explore the influence on dehydrogenation by Li doping. Both the Li substitution doping and interstitial doping are considered. The bond length, charge density difference and Bader charge are investigated to understand the effects of Li doping on local lattice structure and bonding property of MgH2(110) surface. Both atomic hydrogen and molecular hydrogen desorption are considered. The atomic hydrogen desorption energies decrease significantly upon Li doping, which suggests that Li favors the dehydrogenation of MgH2. Moreover, the activation energy barriers for molecular hydrogen desorption from pure and Li-doped MgH2(110) surfaces are predicted via one-step direct dehydrogenation manner. It is found that a significant reduction in the activation barrier when Li substitutes Mg while interstitial Li has no apparent catalytic effect on the activation barrier.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 68 条
[1]  
[Anonymous], DOE TECHNICAL TARGET
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Thermodynamic investigation of the magnesium-hydrogen system [J].
Bogdanovic, B ;
Bohmhammel, K ;
Christ, B ;
Reiser, A ;
Schlichte, K ;
Vehlen, R ;
Wolf, U .
JOURNAL OF ALLOYS AND COMPOUNDS, 1999, 282 (1-2) :84-92
[4]   Structure of the high pressure phase γ-MgH2 by neutron powder diffraction [J].
Bortz, M ;
Bertheville, B ;
Böttger, G ;
Yvon, K .
JOURNAL OF ALLOYS AND COMPOUNDS, 1999, 287 (1-2) :L4-L6
[5]   MgCl2 promoted hydrolysis of MgH2 nanoparticles for highly efficient H2 generation [J].
Chen, Jun ;
Fu, He ;
Xiong, Yifu ;
Xu, Jinrong ;
Zheng, Jie ;
Li, Xingguo .
NANO ENERGY, 2014, 10 :337-343
[6]   Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage [J].
Cho, Eun Seon ;
Ruminski, Anne M. ;
Aloni, Shaul ;
Liu, Yi-Sheng ;
Guo, Jinghua ;
Urban, Jeffrey J. .
NATURE COMMUNICATIONS, 2016, 7
[7]   First Principles Study on Hydrogen Desorption from a Metal (=Al, Ti, Mn, Ni) Doped MgH2 (110) Surface [J].
Dai, J. H. ;
Song, Y. ;
Yang, R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (25) :11328-11334
[8]   Room-Temperature Transient Hydrogen Uptake of MgH2 Induced by Nb-Doped TiO2 Solid-Solution Catalysts [J].
Dan, Liang ;
Wang, Hui ;
Yang, Xiaobao ;
Liu, Jiangwen ;
Ouyang, Liuzhang ;
Zhu, Min .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (25) :30372-30382
[9]   The "burst effect" of hydrogen desorption in MgH2 dehydrogenation [J].
Dong, Shuai ;
Li, Chaoqun ;
Wang, Jinhui ;
Liu, Hao ;
Ding, Zhao ;
Gao, Zhengyang ;
Yang, Weijie ;
Lv, Wei ;
Wei, Li ;
Wu, Ying ;
Li, Hao .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (42) :22363-22372
[10]   First-principle studies of the formation and diffusion of hydrogen vacancies in magnesium hydride [J].
Du, A. J. ;
Smith, Sean C. ;
Lu, G. Q. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (23) :8360-8365