Information-Theoretic Limits on the Performance of Auditory Attention Decoders

被引:0
作者
Abeysekara, Ruwanthi [1 ,2 ]
Smalt, Christopher J. [4 ]
Karunathilake, I. M. Dushyanthi [1 ,2 ]
Simon, Jonathan Z. [1 ,2 ,3 ]
Babadi, Behtash [1 ,2 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Syst Res, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Biol, College Pk, MD USA
[4] MIT Lincoln Lab, Human Hlth & Performance Syst Grp, Lexington, MA USA
来源
FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF | 2023年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Auditory attention decoding; information theory; channel capacity; error bounds; MEG; SPEAKER; ENVIRONMENT; SPEECH;
D O I
10.1109/IEEECONF59524.2023.10476856
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Speaker-specific attention decoding from neural recordings to suppress the acoustic background and extract a target speaker in an in-the-wild multi-speaker conversation scenario poses a cornerstone challenge for advanced hearing devices. Despite several recent advances in auditory attention decoding, most existing approaches fail to reach the real-time performance and attention decoding accuracy required by hearing aid devices. In this work, we aim to quantify fundamental limits on the performance of auditory attention decoding by establishing and computing the trade-off between accuracy and decision window length. We demonstrate the utility of our theoretical bounds in benchmarking the performance of existing widely-used attention decoding algorithms using both simulated and experimentally recorded magnetoencephalography data.
引用
收藏
页码:1479 / 1483
页数:5
相关论文
共 30 条
  • [1] Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling
    Akram, Sahar
    Presacco, Alessandro
    Simon, Jonathan Z.
    Shamma, Shihab A.
    Babadi, Behtash
    [J]. NEUROIMAGE, 2016, 124 : 906 - 917
  • [2] A Tutorial on Auditory Attention Identification Methods
    Alickovic, Emina
    Lunner, Thomas
    Gustafsson, Fredrik
    Ljung, Lennart
    [J]. FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [3] Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid
    Borgstrom, Bengt J.
    Brandstein, Michael S.
    Ciccarelli, Gregory A.
    Quatieri, Thomas F.
    Smalt, Christopher J.
    [J]. NEURAL NETWORKS, 2021, 140 : 136 - 147
  • [4] Auditory Attention Detection via Cross-Modal Attention
    Cai, Siqi
    Li, Peiwen
    Su, Enze
    Xie, Longhan
    [J]. FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [5] Shrinkage Algorithms for MMSE Covariance Estimation
    Chen, Yilun
    Wiesel, Ami
    Eldar, Yonina C.
    Hero, Alfred O.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) : 5016 - 5029
  • [6] Comparison of Two-Talker Attention Decoding from EEG with Nonlinear Neural Networks and Linear Methods
    Ciccarelli, Gregory
    Nolan, Michael
    Perricone, Joseph
    Calamia, Paul T.
    Haro, Stephanie
    O'Sullivan, James
    Mesgarani, Nima
    Quatieri, Thomas F.
    Smalt, Christopher J.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Cover T. M., 1999, Elements of Information Theory
  • [8] The Multivariate Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli
    Crosse, Michael J.
    Di Liberto, Giovanni M.
    Bednar, Adam
    Lalor, Edmund C.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2016, 10
  • [9] Dau T., 2017, The Journal of the Acoustical Society of America, V141, P3893
  • [10] Estimating sparse spectro-temporal receptive fields with natural stimuli
    David, Stephen V.
    Mesgarani, Nima
    Shamma, Shihab A.
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2007, 18 (03) : 191 - 212