Normal tissue complication probability model for acute oral mucositis in patients with head and neck cancer undergoing carbon ion radiation therapy based on dosimetry, radiomics, and dosiomics

被引:2
作者
Meng, Xiangdi [1 ]
Ju, Zhuojun [1 ]
Sakai, Makoto [2 ]
Li, Yang [3 ]
Musha, Atsushi [2 ,4 ]
Kubo, Nobuteru [2 ]
Kawamura, Hidemasa [2 ]
Ohno, Tatsuya [1 ,2 ]
机构
[1] Gunma Univ, Dept Radiat Oncol, Grad Sch Med, Maebashi, Japan
[2] Gunma Univ, Heavy Ion Med Ctr, Maebashi, Japan
[3] Harbin Med Univ, Dept Radiat Oncol, Canc Hosp, Harbin, Peoples R China
[4] Gunma Univ, Grad Sch Med, Dept Oral & Maxillofacial Surg & Plast Surg, Maebashi, Japan
关键词
Carbon ion radiation therapy; Head and neck cancer; Prediction model; Radiomics; Dosiomics; RADIOTHERAPY; RISK; CHEMOTHERAPY; VALIDATION; MANAGEMENT; CARCINOMA; TOXICITY; SYSTEM;
D O I
10.1016/j.radonc.2025.110709
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: To develop a normal tissue complication probability (NTCP) model for predicting grade >= 2 acute oral mucositis (AOM) in head and neck cancer patients undergoing carbon-ion radiation therapy (CIRT). Methods and materials: We retrospectively included 178 patients, collecting clinical, dose-volume histogram (DVH), radiomics, and dosiomics data. Patients were randomly divided into training (70%) and test sets (30%). Feature selection involved univariable logistic regression, least absolute shrinkage and selection operator regression, stepwise backward regression, and Spearman's correlation test, with the bootstrap method ensuring reliability. Multivariable models were built on the training set and evaluated using the test set. Results: The optimal NTCP model incorporated a DVH parameter (V37Gy [relative biological effectiveness, RBE]), radiomics, and dosiomics features, achieving an area under the curve (AUC) of 0.932 in the training set and 0.959 in the test set. This hybrid model outperformed those based on single DVH, radiomics, dosiomics, or clinical data (Bonferroni-adjusted p <0.001 and Delta AUC > 0 for all comparisons in 1,000 bootstrap validations). Calibration curves showed strong agreement between predictions and outcomes. A 44.0 % AOM risk threshold was proposed, yielding accuracies of 87.1 % in the training set and 90.7 % in the test set. Conclusions: We developed the first NTCP model for estimating AOM risk in head and neck cancer patients undergoing CIRT and proposed a risk stratification. This model may assist in clinical decision-making and improve treatment planning for AOM prevention and management by identifying high-risk patients.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Predicting severe radiation-induced oral mucositis in head and neck cancer patients using integrated baseline CT radiomic, dosimetry, and clinical features: A machine learning approach [J].
Agheli, Razieh ;
Siavashpour, Zahra ;
Reiazi, Reza ;
Azghandi, Samira ;
Cheraghi, Susan ;
Paydar, Reza .
HELIYON, 2024, 10 (03)
[2]   Radiomics and Dosiomics for Predicting Local Control after Carbon-Ion Radiotherapy in Skull-Base Chordoma [J].
Buizza, Giulia ;
Paganelli, Chiara ;
D'Ippolito, Emma ;
Fontana, Giulia ;
Molinelli, Silvia ;
Preda, Lorenzo ;
Riva, Giulia ;
Iannalfi, Alberto ;
Valvo, Francesca ;
Orlandi, Ester ;
Baroni, Guido .
CANCERS, 2021, 13 (02) :1-15
[3]   Normal Tissue Complication Probability (NTCP) Modelling of Severe Acute Mucositis using a Novel Oral Mucosal Surface Organ at Risk [J].
Dean, J. A. ;
Welsh, L. C. ;
Wong, K. H. ;
Aleksic, A. ;
Dunne, E. ;
Islam, M. R. ;
Patel, A. ;
Patel, P. ;
Petkar, I. ;
Phillips, I. ;
Sham, J. ;
Schick, U. ;
Newbold, K. L. ;
Bhide, S. A. ;
Harrington, K. J. ;
Nutting, C. M. ;
Gulliford, S. L. .
CLINICAL ONCOLOGY, 2017, 29 (04) :263-273
[4]   Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy [J].
Dean, Jamie A. ;
Wong, Kee H. ;
Welsh, Liam C. ;
Jones, Ann-Britt ;
Schick, Ulrike ;
Newbold, Kate L. ;
Bhide, Shreerang A. ;
Harrington, Kevin J. ;
Nutting, Christopher M. ;
Gulliford, Sarah L. .
RADIOTHERAPY AND ONCOLOGY, 2016, 120 (01) :21-27
[5]   A novel method for delineation of oral mucosa for radiotherapy dose-response studies [J].
Dean, Jamie A. ;
Welsh, Liam C. ;
Gulliford, Sarah L. ;
Harrington, Kevin J. ;
Nutting, Christopher M. .
RADIOTHERAPY AND ONCOLOGY, 2015, 115 (01) :63-66
[6]   Application of Radiomics for the Prediction of Radiation-Induced Toxicity in the IMRT Era: Current State-of-the-Art [J].
Desideri, Isacco ;
Loi, Mauro ;
Francolini, Giulio ;
Becherini, Carlotta ;
Livi, Lorenzo ;
Bonomo, Pierluigi .
FRONTIERS IN ONCOLOGY, 2020, 10
[7]   Declarations of Independence: How Embedded Multicollinearity Errors Affect Dosimetric and Other Complex Analyses in Radiation Oncology [J].
Ellsworth, Susannah G. ;
van Rossum, Peter S. N. ;
Mohan, Radhe ;
Lin, Steven H. ;
Grassberger, Clemens ;
Hobbs, Brian .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (05) :1054-1062
[8]   Risk, outcomes, and costs of radiation-induced oral mucositis among patients with head-and-neck malignancies [J].
Elting, Linda S. ;
Cooksley, Catherine D. ;
Chambers, Mark S. ;
Garden, Adam S. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 68 (04) :1110-1120
[9]   Design and Selection of Machine Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication Probability Modeling of Xerostomia [J].
Gabrys, Hubert S. ;
Buettner, Florian ;
Sterzing, Florian ;
Hauswald, Henrik ;
Bangert, Mark .
FRONTIERS IN ONCOLOGY, 2018, 8
[10]   Prediction of radiation-induced mucositis of H&N cancer patients based on a large patient cohort [J].
Hansen, C. R. ;
Bertelsen, A. ;
Zukauskaite, R. ;
Johnsen, L. ;
Bernchou, U. ;
Thwaites, D., I ;
Eriksen, J. G. ;
Johansen, J. ;
Brink, C. .
RADIOTHERAPY AND ONCOLOGY, 2020, 147 :15-21