Ore genesis of the Chazangcuo Cu-Pb-Zn deposit in Tibet: evidence from mineralogy, fluid inclusions, S-Pb isotopes, and elemental geochemistry

被引:0
|
作者
Li, Yan [1 ]
Wang, Jianguo [1 ,2 ]
Yu, Zezhang [3 ]
Wei, Shengyun [1 ]
Ren, Haidong [1 ]
Ma, Ming [1 ]
Wang, Zhinan [1 ]
Hu, Jian [1 ]
机构
[1] Qinghai Univ, Sch Geol Engn, Xining, Peoples R China
[2] Key Lab Cenozo Resources & Environm Northern Margi, Xining, Peoples R China
[3] Tibet Xinhu Min Co Ltd, Lhasa, Peoples R China
基金
中国国家自然科学基金;
关键词
fluid inclusion; S-Pb isotopes; electron probe; mineralization periods; source of metallogenic materials; ore genesis; CONTINENTAL-CRUST; H-O; MANTLE; CONSTRAINTS; EVOLUTION; SULFUR; CHINA;
D O I
10.3389/feart.2024.1420043
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Chazangcuo copper-lead-zinc deposit (hereafter referred to as the Chazangcuo deposit) is situated in the northern portion of the western section of the Gangdese polymetallic metallogenic belt in Tibet, with ore bodies strictly governed by Linzizong Group magmatic rocks and EW-trending faults. This study aims to ascertain the mineralization periods, sources of ore-forming materials, metallogenic physicochemical conditions, and genesis of this deposit. Based on comprehensive field geological surveys, sampling, and microscopic examination of petrological and mineralogical characteristics, we perform qualitative and quantitative geochemical analyses of major elements, trace elements, and rare earth elements (REEs), fluid inclusions, and sulfur and lead isotopes. The findings reveal that the mineralization process of the Chazangcuo deposit can be divided into three periods and four stages: the magmatic-hydrothermal, hydrothermal, and supergene mineralization periods sequentially, which consist of the mineralization stages of quartz-pyrite-sphalerite, medium-low-temperature hydrothermal sulfides, chlorite-carbonate minerals, and supergene oxidation in a chronological order. The ore-forming fluids prove to be medium-low-temperature low-density fluids, and the ore-forming materials are characteristic of upper crustal-derived materials. The ore-forming environment is a medium-low mineralization temperature, a shallow and weakly reducing environment. Overall, the Chazangcuo deposit is identified as a medium-low-temperature magmatic-hydrothermal deposit. The metallogenic model has the vertical zoning characteristics of lead-zinc in the upper part and copper in the lower part.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] The Genesis of the Xiaohongshilazi Pb-Zn (Ag) deposit: Evidence from S-Pb isotopes and elemental characteristics
    Wang, Guilong
    Wang, Da
    Bai, Feng
    Xu, Debing
    Wang, GaoTian
    ACTA PETROLOGICA SINICA, 2024, 40 (01) : 241 - 266
  • [2] A discussion on the genesis of the Wulanbaiqi Pb-Zn deposit, Inner Mongolia: Evidence from fluid inclusions, S-Pb isotopes and trace elements of ore minerals
    Wang XinYu
    Zhu XinYou
    Zhu ZhengKun
    Zang WenShuan
    Zhou ZhiGuang
    Yao Tu
    Yan PengCheng
    ACTA PETROLOGICA SINICA, 2020, 36 (07) : 2232 - 2248
  • [3] Ore Genesis of the Chuduoqu Pb-Zn-Cu Deposit in the Tuotuohe Area, Central Tibet: Evidence from Fluid Inclusions and C-H-O-S-Pb Isotopes Systematics
    Sun, Yong-Gang
    Li, Bi-Le
    Sun, Feng-Yue
    Qian, Ye
    Yu, Run-Tao
    Zhao, Tuo-Fei
    Dong, Jun-Lin
    MINERALS, 2019, 9 (05):
  • [4] Mineralogy, fluid inclusions, and S-Pb isotope geochemistry study of the Tuboh Pb-Zn-Ag polymetallic deposit, Lubuklinggau, Sumatra, Indonesia
    Xu, Jinhong
    Zhang, Zhengwei
    Wu, Chengquan
    Shu, Qiao
    Zheng, Chaofei
    Li, Xiyao
    Jin, Ziru
    ORE GEOLOGY REVIEWS, 2019, 112
  • [5] Fluid origin and evolution of the Pusangguo Cu-Pb-Zn skarn deposit in Tibet: Constraints from fluid inclusions and isotope compositions
    Li, Zhuang
    Zhang, Peng
    Zhu, Junrong
    Xu, Jiaoqi
    Niu, Xudong
    ORE GEOLOGY REVIEWS, 2022, 150
  • [6] Ore genesis of the Fule Pb-Zn deposit and its relationship with the Emeishan Large Igneous Province: Evidence from mineralogy, bulk C-O-S and in situ S-Pb isotopes
    Zhou, Jia-Xi
    Luo, Kai
    Wang, Xuan-Ce
    Wilde, Simon A.
    Wu, Tao
    Huang, Zhi-Long
    Cui, Yin-Liang
    Zhao, Jian-Xin
    GONDWANA RESEARCH, 2018, 54 : 161 - 179
  • [7] Some new data on the genesis of the Linghou Cu-Pb-Zn polymetallic deposit-Based on the study of fluid inclusions and C-H-O-S-Pb isotopes
    Tang Yanwen
    Li Xiaofeng
    Zhang Xiaoqi
    Yang Jianling
    Xie Yuling
    Lantingguang
    Huang Youfu
    Huang Cheng
    Yin Rongchao
    ORE GEOLOGY REVIEWS, 2015, 71 : 248 - 262
  • [8] Mineralogy, fluid inclusions and S-Pb-H-O isotopes of the Erdaokan Ag-Pb-Zn deposit, Duobaoshan metallogenic belt, NE China: Implications for ore genesis
    Yuan, Mao-Wen
    Li, Lin
    Li, Sheng-Rong
    Li, Cheng-Lu
    Santosh, M.
    Alam, Masroor
    Bao, Xi-Bo
    ORE GEOLOGY REVIEWS, 2019, 113
  • [9] Genetic significance of fluid inclusions in the CSA Cu-Pb-Zn deposit, Cobar, Australia
    Giles, Alan D.
    Marshall, Brian
    Ore Geol. Rev., 1600, 3-4 (241-266):
  • [10] Genetic significance of fluid inclusions in the CSA Cu-Pb-Zn deposit, Cobar, Australia
    Giles, AD
    Marshall, B
    ORE GEOLOGY REVIEWS, 2004, 24 (3-4) : 241 - 266