Land conversions not climate effects are the dominant indirect consequence of sun-driven CO2 capture, conversion, and sequestration

被引:1
作者
Adam, Moritz [1 ]
Kleinen, Thomas [2 ]
May, Matthias M. [3 ]
Rehfeld, Kira [1 ,4 ]
机构
[1] Univ Tubingen, Dept Geosci, Tubingen, Germany
[2] Max Planck Inst Meteorol, Hamburg, Germany
[3] Univ Tubingen, Inst Phys & Theoret Chem, Tubingen, Germany
[4] Univ Tubingen, Dept Phys, Tubingen, Germany
来源
ENVIRONMENTAL RESEARCH LETTERS | 2025年 / 20卷 / 03期
基金
欧洲研究理事会;
关键词
carbon dioxide removal; earth system modeling; CO2; conversion; photoelectrochemistry; land surface model; CDR; carbon cycle; DIRECT AIR CAPTURE; MODEL;
D O I
10.1088/1748-9326/ada971
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Removing carbon dioxide (CO2) from the atmosphere is required for mitigating climate change. Large-scale direct air capture combined with injecting CO2 into geological formations could retain carbon long-term, but demands a substantial amount of energy, pipeline infrastructure, and suitable sites for gaseous storage. Here, we study Earth system impacts of modular, sun-powered process chains, which combine direct air capture with (electro)chemical conversion of the captured CO2 into liquid or solid sink products and subsequent product storage (sDACCCS). Drawing on a novel explicit representation of CO2 removal in a state-of-the-art Earth system model, we find that these process chains can be renewably powered and have minimal implications for the climate and carbon cycle. However, to stabilize the planetary temperature two degrees above pre-industrial levels, CO2 capturing, conversion, and associated energy harvest demand up to 0.46% of the global land area in a high-efficiency scenario. This global land footprint increases to 2.82% when assuming present-day technology and pushing to the bounds of removal. Mitigating historical emission burdens within individual countries in this high-removal scenario requires converting an area equivalent to 40% of the European Union's agricultural land. Scenarios assuming successful technological development could halve this environmental burden, but it is uncertain to what degree they could materialize. Therefore, ambitious decarbonization is vital to reduce the risk of land use conflicts if efficiencies remain lower than expected.
引用
收藏
页数:14
相关论文
共 73 条
[1]  
Adam M., 2025, Zenodo, DOI [10.5281/zenodo.14795396, DOI 10.5281/ZENODO.14795396]
[2]  
[Anonymous], 2015, CLIM INT CARB DIOX R
[3]  
[Anonymous], 2020, Glob. Photovolt. Power Potential by Ctry
[4]  
[Anonymous], 2022, The Global Land Outlook, Vsecond
[5]   Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models [J].
Arora, Vivek K. ;
Katavouta, Anna ;
Williams, Richard G. ;
Jones, Chris D. ;
Brovkin, Victor ;
Friedlingstein, Pierre ;
Schwinger, Jorg ;
Bopp, Laurent ;
Boucher, Olivier ;
Cadule, Patricia ;
Chamberlain, Matthew A. ;
Christian, James R. ;
Delire, Christine ;
Fisher, Rosie A. ;
Hajima, Tomohiro ;
Ilyina, Tatiana ;
Joetzjer, Emilie ;
Kawamiya, Michio ;
Koven, Charles D. ;
Krasting, John P. ;
Law, Rachel M. ;
Lawrence, David M. ;
Lenton, Andrew ;
Lindsay, Keith ;
Pongratz, Julia ;
Raddatz, Thomas ;
Seferian, Roland ;
Tachiiri, Kaoru ;
Tjiputra, Jerry F. ;
Wiltshire, Andy ;
Wu, Tongwen ;
Ziehn, Tilo .
BIOGEOSCIENCES, 2020, 17 (16) :4173-4222
[6]  
Arora VK, 2011, NAT GEOSCI, V4, P514, DOI [10.1038/ngeo1182, 10.1038/NGEO1182]
[7]  
Babiker M., 2022, IPCC, DOI [DOI 10.1017/9781009157926.005, 10.1017/ 9781009157926.005]
[8]   Solar park management and design to boost bumble bee populations [J].
Blaydes, H. ;
Gardner, E. ;
Whyatt, J. D. ;
Potts, S. G. ;
Armstrong, A. .
ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (04)
[9]   Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation [J].
Breyer, Christian ;
Fasihi, Mahdi ;
Bajamundi, Cyril ;
Creutzig, Felix .
JOULE, 2019, 3 (09) :2053-2057
[10]   Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling [J].
Breyer, Christian ;
Fasihi, Mahdi ;
Aghahosseini, Arman .
MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2020, 25 (01) :43-65