Standardized Daily High-Resolution Large-Eddy Simulations of the Arctic Boundary Layer and Clouds During the Complete MOSAiC Drift

被引:1
作者
Schnierstein, N. [1 ]
Chylik, J. [1 ,2 ]
Shupe, M. D. [3 ,4 ]
Neggers, R. A. J. [1 ]
机构
[1] Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany
[2] Univ Reading, Dept Meteorol, Reading, England
[3] NOAA, Phys Sci Lab, Boulder, CO 80305 USA
[4] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
关键词
large-eddy simulations; arctic; mosaic; boundary layer; mixed-phase clouds; MIXED-PHASE CLOUDS; SEA-ICE; SIZE-DISTRIBUTION; BULK PARAMETERIZATION; RADIATIVE PROPERTIES; EFFECTIVE DIAMETER; MODEL SIMULATIONS; EFFECTIVE RADIUS; SURFACE; STRATOCUMULUS;
D O I
10.1029/2024MS004296
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study utilizes the wealth of observational data collected during the recent Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift experiment to constrain and evaluate close to two-hundred daily Large-Eddy Simulations (LES) of Arctic boundary layers and clouds at high resolutions. A standardized approach is adopted to tightly integrate field measurements into the experimental configuration. Covering the full drift represents a step forward from single-case LES studies, and allows for a robust assessment of model performance against independent data under a range of atmospheric conditions. A homogeneously forced domain is simulated in a Lagrangian frame of reference, initialized with radiosonde and value-added cloud profiles. Prescribed boundary conditions include various measured surface characteristics. Time-constant composite forcing is applied, primarily consisting of subsidence rates sampled from reanalysis data. The simulations run for 3 hours, allowing turbulence and clouds to spin up while still facilitating direct comparison to MOSAiC data. Key aspects such as the vertical thermodynamic structure, cloud properties, and surface energy fluxes are well reproduced and maintained. The model captures the bimodal distribution of atmospheric states that is typical of Arctic climate. Selected days are investigated more closely to assess the model's skill in maintaining the observed boundary layer structure. The sensitivity to various aspects of the experimental configuration and model physics is tested. The model input and output are available to the scientific community, supplementing the MOSAiC data archive. The close agreement with observed meteorology justifies the use of LES for gaining further insight into Arctic boundary layer processes and their role in Arctic climate change.
引用
收藏
页数:34
相关论文
共 155 条
[51]   The Impact of Sea-Ice Loss on Arctic Climate Feedbacks and Their Role for Arctic Amplification [J].
Jenkins, Matthew ;
Dai, Aiguo .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (15)
[52]   An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC [J].
Jozef, Gina C. ;
Cassano, John J. ;
Dahlke, Sandro ;
Dice, Mckenzie ;
Cox, Christopher J. ;
de Boer, Gijs .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2024, 24 (02) :1429-1450
[53]   A Performance Baseline for the Representation of Clouds and Humidity in Cloud-Resolving ICON-LEM Simulations in the Arctic [J].
Kiszler, Theresa ;
Ebell, Kerstin ;
Schemann, Vera .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2023, 15 (05)
[54]   Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud [J].
Klein, Stephen A. ;
McCoy, Renata B. ;
Morrison, Hugh ;
Ackerman, Andrew S. ;
Avramov, Alexander ;
de Boer, Gijs ;
Chen, Mingxuan ;
Cole, Jason N. S. ;
Del Genio, Anthony D. ;
Falk, Michael ;
Foster, Michael J. ;
Fridlind, Ann ;
Golaz, Jean-Christophe ;
Hashino, Tempei ;
Harrington, Jerry Y. ;
Hoose, Corinna ;
Khairoutdinov, Marat F. ;
Larson, Vincent E. ;
Liu, Xiaohong ;
Luo, Yali ;
McFarquhar, Greg M. ;
Menon, Surabi ;
Neggers, Roel A. J. ;
Park, Sungsu ;
Poellot, Michael R. ;
Schmidt, Jerome M. ;
Sednev, Igor ;
Shipway, Ben J. ;
Shupe, Matthew D. ;
Spangenbery, Douglas A. ;
Sud, Yogesh C. ;
Turner, David D. ;
Veron, Dana E. ;
von Salzen, Knut ;
Walker, Gregory K. ;
Wang, Zhien ;
Wolf, Audrey B. ;
Xie, Shaocheng ;
Xu, Kuan-Man ;
Yang, Fanglin ;
Zhang, Gong .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (641) :979-1002
[55]   Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation [J].
Konoshonkin, Alexander ;
Borovoi, Anatoli ;
Kustova, Natalia ;
Okamoto, Hajime ;
Ishimoto, Hiroshi ;
Grynko, Yevgen ;
Foerstner, Jens .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 195 :132-140
[56]  
Koontz Annette, 2016, ARM, DOI 10.5439/1323894
[57]   Radiative Transfer Model 3.0 integrated into the PALM model system 6.0 [J].
Krc, Pavel ;
Resler, Jaroslav ;
Suehring, Matthias ;
Schubert, Sebastian ;
Salim, Mohamed H. ;
Fuka, Vladimir .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (05) :3095-3120
[58]   Midwinter Arctic leads form and dissipate low clouds [J].
Li, Xia ;
Krueger, Steven K. ;
Strong, Courtenay ;
Mace, Gerald G. ;
Benson, Sally .
NATURE COMMUNICATIONS, 2020, 11 (01)
[59]   Constraints on simulated past Arctic amplification and lapse rate feedback from observations [J].
Linke, Olivia ;
Quaas, Johannes ;
Baumer, Finja ;
Becker, Sebastian ;
Chylik, Jan ;
Dahlke, Sandro ;
Ehrlich, Andre ;
Handorf, Doerthe ;
Jacobi, Christoph ;
Kalesse-Los, Heike ;
Lelli, Luca ;
Mehrdad, Sina ;
Neggers, Roel A. J. ;
Riebold, Johannes ;
Saavedra Garfias, Pablo ;
Schnierstein, Niklas ;
Shupe, Matthew D. ;
Smith, Chris ;
Spreen, Gunnar ;
Verneuil, Baptiste ;
Vinjamuri, Kameswara S. ;
Vountas, Marco ;
Wendisch, Manfred .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (17) :9963-9992
[60]  
LIOU KN, 1988, J ATMOS SCI, V45, P1940, DOI 10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO