Expansive Measures of Nonautonomous Iterated Function Systems

被引:0
作者
Cui, Mengxin [1 ,2 ]
Selmi, Bilel [3 ]
Li, Zhiming [1 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
基金
中国国家自然科学基金;
关键词
Nonautonomous iterated function systems; Positively expansive measures; Complexity; Stable point; MAPS; SETS;
D O I
10.1007/s12346-024-01216-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we explore expansive measures and expansiveness within the context of nonautonomous iterated function systems. Specifically, we demonstrate that the set of expansive measures for any nonautonomous iterated function system forms a G delta sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\delta \sigma }$$\end{document} subset of the set of all Borel measures.
引用
收藏
页数:19
相关论文
共 43 条
  • [1] Some properties of positive entropy maps
    Arbieto, A.
    Morales, C. A.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 765 - 776
  • [2] Arbieto A., 2013, Publ. Mat. Urug, V14, P61
  • [3] Periodic orbits and expansiveness
    Arbieto, Alexander
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 801 - 807
  • [4] A note on measure-expansive diffeomorphisms
    Artigue, Alfonso
    Carrasco-Olivera, Dante
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (01) : 713 - 716
  • [5] Barnsley M. F., 1988, Fractals Everywhere
  • [6] BILLINGSLEY P., 1999, Convergence of probability measures, V2nd, DOI [10.1002/9780470316962, DOI 10.1002/9780470316962]
  • [7] EXPANSIVE ONE-PARAMETER FLOWS
    BOWEN, R
    WALTERS, P
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) : 180 - &
  • [8] Expansive measures for flows
    Carrasco-Olivera, D.
    Morales, C. A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) : 2246 - 2260
  • [9] Eisenberg M., 1966, Fund. Math, V59, P313
  • [10] Fornaess JE, 2013, MATH ANN, V356, P1471, DOI 10.1007/s00208-012-0891-0