Guanidyl-rich highly branched poly(β-amino ester)s for the delivery of dual CRISPR ribonucleoprotein for efficient large DNA fragment deletion

被引:0
作者
Wang, Xianqing [1 ,2 ]
Li, Yinhao [2 ]
Friess, Dana [2 ]
Yao, Liang [2 ]
Wang, Xi [3 ]
He, Zhonglei [3 ]
He, Wei [1 ]
Li, Ming [1 ]
Wang, Wenxin [2 ]
机构
[1] Fudan Univ, Childrens Hosp, Natl Childrens Med Ctr, Dept Dermatol, 399 Wanyuan Rd, Shanghai 201102, Peoples R China
[2] Univ Coll Dublin, Charles Inst Dermatol, Sch Med, Dublin D04 V1W8, Ireland
[3] Anhui Univ Sci & Technol, Inst Precis Med AUST IPM, Huainan, Peoples R China
基金
爱尔兰科学基金会;
关键词
Poly(beta-amino ester)s; Guanidyl-rich; CRISPR/Cas9; ribonucleoprotein; Non-viral gene editing; Dystrophic epidermolysis bullosa; Large-scale gene editing; CAS9; RIBONUCLEOPROTEIN; GENE; VECTORS; THERAPY; PROTEIN; POLYMER;
D O I
10.1016/j.jconrel.2025.01.032
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gene editing technologies, particularly clustered regularly interspersed short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, have revolutionized the ability to modify gene sequences in living cells for therapeutic purposes. Delivery of CRISPR/Cas ribonucleoprotein (RNP) is preferred over its DNA and RNA formats in terms of gene editing effectiveness and low risk of off-target events. However, the intracellular delivery of RNP poses significant challenges and necessitates the development of non-viral vectors. Our previous study has demonstrated that phenyl guanidine (PG) group modified linear poly(beta-amino ester)s (PAEs) can facilitate CRISPR/Cas9 RNP mediated gene knockout in HeLa cells. Here, we further investigated the utilization of highly branched PAEs (HPAEs) with PG groups (HPAE-PG) for efficient delivery of cytosolic protein and CRISPR/Cas9 RNP complexes, while also examining the influence of branching units and branching ratios on the delivery process. The efficiency of HPAE-PG/RNP transfection for large DNA fragment deletion was assessed using a dual sgRNA-guided approach to delete exon 80 of the human COL7A1 gene, which harbors mutations associated with dystrophic epidermolysis bullosa (DEB). Our findings demonstrate that HPAE-PG/RNP successfully induced a deletion of 56 base pairs (exon 80) within COL7A1 in both HEK cells and keratinocytes derived from recessive DEB patients. This study highlights the potential of HPAE-PG as a non-viral vector for large DNA fragment deletion, emphasizing the importance of branching factors of HPAEs in optimizing CRISPR RNP delivery for therapeutic applications in genetic disorders.
引用
收藏
页码:549 / 557
页数:9
相关论文
共 31 条
  • [1] The clinical progress of mRNA vaccines and immunotherapies
    Barbier, Ann J.
    Jiang, Allen Yujie
    Zhang, Peng
    Wooster, Richard
    Anderson, Daniel G.
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (06) : 840 - 854
  • [2] Carbamoylated Guanidine-Containing Polymers for Non-Covalent Functional Protein Delivery in Serum-Containing Media
    Barrios, Alfonso
    Estrada, Marilen
    Moon, Joong Ho
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (12)
  • [3] Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing
    Bonafont, Jose
    Mencia, Angeles
    Garcia, Marta
    Torres, Raul
    Rodriguez, Sandra
    Carretero, Marta
    Chacon-Solano, Esteban
    Modamio-Hoybjor, Silvia
    Marinas, Lucia
    Leon, Carlos
    Escamez, Maria J.
    Hausser, Ingrid
    Del Rio, Marcela
    Murillas, Rodolfo
    Larcher, Fernando
    [J]. MOLECULAR THERAPY, 2019, 27 (05) : 986 - 998
  • [4] TYPE-VII COLLAGEN, ANCHORING FIBRILS, AND EPIDERMOLYSIS-BULLOSA
    BURGESON, RE
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1993, 101 (03) : 252 - 255
  • [5] Rational Design of a Polymer with Robust Efficacy for Intracellular Protein and Peptide Delivery
    Chang, Hong
    Lv, Jia
    Gao, Xin
    Wang, Xing
    Wang, Hui
    Chen, Hui
    He, Xu
    Li, Lei
    Cheng, Yiyun
    [J]. NANO LETTERS, 2017, 17 (03) : 1678 - 1684
  • [6] Prime editing for precise and highly versatile genome manipulation
    Chen, Peter J.
    Liu, David R.
    [J]. NATURE REVIEWS GENETICS, 2023, 24 (03) : 161 - 177
  • [7] Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications
    Cordeiro, Rosemeyre A.
    Serra, Armenio
    Coelho, Jorge F. J.
    Faneca, Henrique
    [J]. JOURNAL OF CONTROLLED RELEASE, 2019, 310 : 155 - 187
  • [8] Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
    Garcia, Marta
    Bonafont, Jose
    Martinez-Palacios, Jesus
    Xu, Rudan
    Turchiano, Giandomenico
    Svensson, Stina
    Thrasher, Adrian J.
    Larcher, Fernando
    Del Rio, Marcela
    Hernandez-Alcoceba, Ruben
    Garin, Marina, I
    Mencia, Angeles
    Murillas, Rodolfo
    [J]. MOLECULAR THERAPY METHODS & CLINICAL DEVELOPMENT, 2022, 27 : 96 - 108
  • [9] Development of Skin-Humanized Mouse Models of Pachyonychia Congenita
    Garcia, Marta
    Larcher, Fernando
    Hickerson, Robyn P.
    Baselga, Eulalia
    Leachman, Sancy A.
    Kaspar, Roger L.
    Del Rio, Marcela
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2011, 131 (05) : 1053 - 1060
  • [10] A Guanidinobenzol-Rich Polymer Overcoming Cascade Delivery Barriers for CRISPR-Cas9 Genome Editing
    Liang, Shuang
    Ma, Ning
    Li, Xingang
    Yun, Kaiqing
    Meng, Qian-Fang
    Ma, Kongshuo
    Yue, Ludan
    Rao, Lang
    Chen, Xiaoyuan
    Wang, Zhaohui
    [J]. NANO LETTERS, 2024, 24 (23) : 6872 - 6880