Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders

被引:0
|
作者
Zhang, Qian-Yun [1 ,2 ]
Su, Chun-Wang [1 ,2 ]
Luo, Qiang [3 ,4 ,5 ,6 ]
Grebogi, Celso [7 ,8 ]
Huang, Zi-Gang [1 ,2 ]
Jiang, Junjie [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Hlth & Rehabil Sci, Sch Life Sci & Technol, Key Lab Biomed Informat Engn,Minist Educ, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Res Ctr Brain Inspired Intelligence, Sch Life Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[3] Fudan Univ, Huashan Hosp, Natl Clin Res Ctr Aging & Med, Shanghai 200433, Peoples R China
[4] Fudan Univ, Inst Brain Sci, Shanghai 200032, Peoples R China
[5] Fudan Univ, Human Phenome Inst, Shanghai 200241, Peoples R China
[6] East China Normal Univ, Sch Psychol & Cognit Sci, Shanghai 200241, Peoples R China
[7] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[8] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
关键词
STATE FUNCTIONAL CONNECTIVITY; CINGULATE CORTEX; ANTERIOR CINGULATE; MAJOR DEPRESSION; SOCIAL COGNITION; AUTISM; MRI; RESPONSES; THALAMUS; SINGLE;
D O I
10.34133/research.0648
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.
引用
收藏
页数:20
相关论文
共 28 条
  • [1] Whole-brain dynamics of human sensorimotor adaptation
    Standage, Dominic, I
    Areshenkoff, Corson N.
    Gale, Daniel J.
    Nashed, Joseph Y.
    Flanagan, J. Randall
    Gallivan, Jason P.
    CEREBRAL CORTEX, 2023, 33 (08) : 4761 - 4778
  • [2] Capturing the non-stationarity of whole-brain dynamics underlying human brain states
    Galadi, J. A.
    Pereira, S. Silva
    Perl, Y. Sanz
    Kringelbach, M. L.
    Gayte, I.
    Laufs, H.
    Tagliazucchi, E.
    Langa, J. A.
    Deco, G.
    NEUROIMAGE, 2021, 244
  • [3] A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis
    Cerri, Stefano
    Puonti, Oula
    Meier, Dominik S.
    Wuerfel, Jens
    Muhlau, Mark
    Siebner, Hartwig R.
    Van Leemput, Koen
    NEUROIMAGE, 2021, 225
  • [4] Estimating whole-brain dynamics by using spectral clustering
    Cribben, Ivor
    Yu, Yi
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2017, 66 (03) : 607 - 627
  • [5] Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders
    Deco, Gustavo
    Kringelbach, Morten L.
    NEURON, 2014, 84 (05) : 892 - 905
  • [6] The impact of regional heterogeneity in whole-brain dynamics in the presence of oscillations
    Perl, Yonatan Sanz
    Zamora-Lopez, Gorka
    Montbrio, Ernest
    Monge-Asensio, Marti
    Vohryzek, Jakub
    Fittipaldi, Sol
    Campo, Cecilia Gonzalez
    Moguilner, Sebastian
    Ibanez, Agustin
    Tagliazucchi, Enzo
    Yeo, B. T. Thomas
    Kringelbach, Morten L.
    Deco, Gustavo
    NETWORK NEUROSCIENCE, 2023, 7 (02) : 632 - 660
  • [7] Whole-brain computational modeling reveals disruption of microscale brain dynamics inHIVinfected individuals
    Zhuang, Yuchuan
    Zhang, Zhengwu
    Tivarus, Madalina
    Qiu, Xing
    Zhong, Jianhui
    Schifitto, Giovanni
    HUMAN BRAIN MAPPING, 2021, 42 (01) : 95 - 109
  • [8] A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
    Cerri, Stefano
    Hoopes, Andrew
    Greve, Douglas N.
    Muhlau, Mark
    Van Leemput, Koen
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 119 - 128
  • [9] Whole-Brain Functional Connectivity Dynamics Associated With Electroconvulsive Therapy Treatment Response
    Fu, Zening
    Sui, Jing
    Espinoza, Randall
    Narr, Katherine
    Qi, Shile
    Sendi, Mohammad S. E.
    Abbott, Christopher C.
    Calhoun, Vince D.
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2022, 7 (03) : 312 - 322
  • [10] Bridging the gap between single receptor type activity and whole-brain dynamics
    Jancke, Dirk
    Herlitze, Stefan
    Kringelbach, Morten L.
    Deco, Gustavo
    FEBS JOURNAL, 2022, 289 (08) : 2067 - 2084