Ultrasensitive and Fast Gas Detection Based on Room-Temperature Indium Arsenide Mid-Wavelength Infrared Photodetectors

被引:1
作者
Dong, Yi [1 ,2 ]
Duan, Shikun [1 ,2 ]
Long, Siyu [1 ,2 ]
Jiang, Yu [1 ,2 ]
Ma, Xinyu [1 ,2 ]
Fang, Yueyue [1 ,2 ]
Liu, Jinjin [1 ,2 ]
Wu, Hao [1 ,2 ]
Li, Tangxin [1 ,2 ]
Jiang, Xiaoyong [1 ,2 ]
Chen, Shouheng [3 ]
Hu, Shuhong [1 ,2 ]
Fu, Xiao [1 ,2 ]
Chen, Xiaolong [3 ]
Chen, Fansheng [1 ,2 ]
Miao, Jinshui [1 ,2 ]
Hu, Weida [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
indium arsenide; mid-wavelength infrared photodetector; non-dispersive infrared absorption spectroscopy; ultra-sensitive and fast gas detection; METHANE DETECTION; SENSOR;
D O I
10.1002/adfm.202422398
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Combustible hydrocarbon gases, typified by methane, are invisible, odorless, and imperceptible, yet they pose significant hazards to human safety and the environment. Therefore, monitoring these gases is crucial in managing and mitigating potential hazards. Here, a gas sensing system is proposed based on the non-dispersive infrared absorption spectroscopy (NDIR) technique. Its core component is a home-built indium arsenide (InAs) semiconductor mid-wavelength infrared photodetector. By material growth and device structure optimization (a peculiar potential barrier layer is designed to form a heterojunction and suppress diffusion carriers), the InAs-based photodetectors show a low-noise performance of 1.62 x 10(-12) A<middle dot>Hz(-1/2) and a record high room-temperature detectivity of 2.1 x 10(10) cm<middle dot>Hz(1/2)<middle dot>W-1 with superior response speed of <40 ns. The sensing system, therefore, gains an ultra-sensitive (<1 ppm) and fast (approximate to 350 ms) gas detection capability of methane compared to current NDIR equipment. The method used in this study paves an avenue for designing ultrasensitive NDIR systems based on photovoltaic devices and provides a new paradigm for highly integrated gas sensing hardware.
引用
收藏
页数:9
相关论文
共 37 条
  • [1] Solid state potentiometric sensor at medium temperatures (150-300°C) for detecting oxidable gaseous species in air
    Alberti, G
    Carbone, A
    Palombari, R
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2001, 75 (1-2) : 125 - 128
  • [2] Alexandrov S. E., 2002, Second Int. Conf. Lasers for Measurement and Information. Transfer
  • [3] A chemiresistive methane sensor
    Bezdek, Mate J.
    Luo, Shao-Xiong Lennon
    Ku, Kang Hee
    Swager, Timothy M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (02)
  • [4] Characteristics of the organic fraction of municipal solid waste and methane production: A review
    Campuzano, Rosalinda
    Gonzalez-Martinez, Simon
    [J]. WASTE MANAGEMENT, 2016, 54 : 3 - 12
  • [5] OPTICAL PROPERTIES OF N-TYPE INDIUM ARSENIDE IN FUNDAMENTAL ABSORPTION EDGE REGION
    DIXON, JR
    ELLIS, JM
    [J]. PHYSICAL REVIEW, 1961, 123 (05): : 1560 - &
  • [6] Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection
    Dong, Ming
    Zheng, Chuantao
    Miao, Shuzhuo
    Zhang, Yu
    Du, Qiaoling
    Wang, Yiding
    Tittel, Frank K.
    [J]. SENSORS, 2017, 17 (10)
  • [7] Semiconductor Gas Sensors Based on Pd/SnO2 Nanomaterials for Methane Detection in Air
    Fedorenko, George
    Oleksenko, Ludmila
    Maksymovych, Nelly
    Skolyar, Galina
    Ripko, Oleksandr
    [J]. NANOSCALE RESEARCH LETTERS, 2017, 12
  • [8] The HITRAN2020 molecular spectroscopic database
    Gordon, I. E.
    Rothman, L. S.
    Hargreaves, R. J.
    Hashemi, R.
    Karlovets, E., V
    Skinner, F. M.
    Conway, E. K.
    Hill, C.
    Kochanov, R., V
    Tan, Y.
    Wcislo, P.
    Finenko, A. A.
    Nelson, K.
    Bernath, P. F.
    Birk, M.
    Boudon, V
    Campargue, A.
    Chance, K., V
    Coustenis, A.
    Drouin, B. J.
    Flaud, J-M
    Gamache, R. R.
    Hodges, J. T.
    Jacquemart, D.
    Mlawer, E. J.
    Nikitin, A., V
    Perevalov, V., I
    Rotger, M.
    Tennyson, J.
    Toon, G. C.
    Tran, H.
    Tyuterev, V. G.
    Adkins, E. M.
    Baker, A.
    Barbe, A.
    Cane, E.
    Csaszar, A. G.
    Dudaryonok, A.
    Egorov, O.
    Fleisher, A. J.
    Fleurbaey, H.
    Foltynowicz, A.
    Furtenbacher, T.
    Harrison, J. J.
    Hartmann, J-M
    Horneman, V-M
    Huang, X.
    Karman, T.
    Karns, J.
    Kassi, S.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
  • [9] Methane explosion accidents of tunnels in SW China
    He, Siyue
    Su, Linjian
    Fan, Haobo
    Ren, Rui
    [J]. GEOMATICS NATURAL HAZARDS & RISK, 2019, 10 (01) : 667 - 677
  • [10] Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854-2010
    Heede, Richard
    [J]. CLIMATIC CHANGE, 2014, 122 (1-2) : 229 - 241