Photocatalytic Carbon Dioxide Reduction with Imidazolium-Based Ionic Liquids

被引:0
|
作者
Eisele, Lisa [1 ]
Bica-Schroeder, Katharina [1 ]
机构
[1] TU Wien, Inst Appl Synthet Chem, Getreidemarkt 9-163, A-1060 Vienna, Austria
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Ionic liquids; CO(2)reduction; photocatalysis; cooperative effect; ELECTROCATALYTIC CO2 REDUCTION; SELECTIVE CONVERSION; SOLUBILITY; METAL; SOLVENTS; CATALYST; CAPTURE; ELECTROREDUCTION; PHOTOSYNTHESIS; CHEMISORPTION;
D O I
10.1002/cssc.202402626
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The growing urgency of addressing climate change caused by greenhouse gas emissions and dwindling fossil fuel supplies has heightened the need for effective strategies to capture and utilize carbon dioxide. Photocatalytic CO2 conversion, inspired by natural photosynthesis, presents a viable approach for transforming CO2 into useful C-1-C-3 chemical intermediates for industrial purposes. However, the inherent stability of CO2 and the competing hydrogen evolution reaction (HER) introduce significant obstacles. Imidazolium-based ionic liquids can pre-activate CO2, accelerate reaction kinetics, and act as eco-friendly solvents or additives. Systems employing ionic liquids with catalysts, such as homogeneous organocatalysts and heterogeneous materials like Metal-Organic Frameworks (MOFs) and quantum dots, offer potential solutions to these challenges. This review focuses on the role of ionic liquids in both homogeneous and heterogeneous photocatalytic processes, emphasizing their use in CO2 reduction and highlighting recent mechanistic insights for imidazolium-based species.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Impact of imidazolium-based ionic liquids on the structure and stability of lysozyme
    Satish, Lakkoji
    Rana, Shubhasmin
    Arakha, Manoranjan
    Rout, Lipeeka
    Ekka, Basanti
    Jha, Suman
    Dash, Priyabrat
    Sahoo, Harekrushna
    SPECTROSCOPY LETTERS, 2016, 49 (06) : 383 - 390
  • [42] A DFT study on lignin dissolution in imidazolium-based ionic liquids
    Zhang, Yaqin
    He, Hongyan
    Dong, Kun
    Fan, Maohong
    Zhang, Suojiang
    RSC ADVANCES, 2017, 7 (21) : 12670 - 12681
  • [43] Thermodynamics of Imidazolium-Based Ionic Liquids Containing the Trifluoromethanesulfonate Anion
    Zaitsau, Dzmitry H.
    Yermalayeu, Andrei V.
    Emel'yanenko, Vladimir N.
    Verevkin, Sergey P.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2018, 41 (08) : 1604 - 1612
  • [44] Inhibition effect of imidazolium-based ionic liquids on pyrophorisity of FeS
    Li, Yawen
    Liu, Hui
    Pan, Kai
    Gou, Xiaoqing
    Zhou, Kai
    Shao, Danni
    Qi, Yi
    Gao, Qi
    Yu, Yi
    Tian, Jiaxin
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 369
  • [45] Substituent effects on cellulose dissolution in imidazolium-based ionic liquids
    Dissanayake, Niwanthi
    Thalangamaarachchige, Vidura D.
    Troxell, Shelby
    Quitevis, Edward L.
    Abidi, Noureddine
    CELLULOSE, 2018, 25 (12) : 6887 - 6900
  • [46] Antimicrobial and Cytotoxic Activity of Novel Imidazolium-Based Ionic Liquids
    Palkowski, Lukasz
    Karolak, Maciej
    Skrzypczak, Andrzej
    Wojcieszak, Marta
    Walkiewicz, Filip
    Podemski, Jonasz
    Jaroch, Karol
    Bojko, Barbara
    Materna, Katarzyna
    Krysinski, Jerzy
    MOLECULES, 2022, 27 (06):
  • [47] Modeling of CO2 Solubility in Selected Imidazolium-Based Ionic Liquids
    Ali, Emad
    Hadj-Kali, Mohamed K.
    Alnashef, Inas
    CHEMICAL ENGINEERING COMMUNICATIONS, 2017, 204 (02) : 205 - 215
  • [48] New trisubstituted imidazolium-based room temperature ionic liquids
    Singh, Rajendra P.
    Meshri, Dayal T.
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2006, 71 (09) : 1265 - 1269
  • [49] Estimation and Prediction of the Physicochemical Properties of Imidazolium-Based Ionic Liquids
    Liu Qing-Shan
    Yang Miao
    Tan Zhi-Cheng
    Welz-Biermann, Urs
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (06) : 1463 - 1467
  • [50] An Unexpected Reaction between 5-Hydroxymethylfurfural and Imidazolium-Based Ionic Liquids at High Temperatures
    Zhang, Zehui
    Liu, Wujun
    Xie, Haibo
    Zhao, Zongbao K.
    MOLECULES, 2011, 16 (10) : 8463 - 8474