Attention U-Net for Binary Mask Generation in Medical Microwave Imaging

被引:0
|
作者
Yang, Yankai [1 ]
Xue, Fei [1 ]
Guo, Lei [1 ]
Abbosh, Amin [1 ]
机构
[1] Univ Queensland, Sch Elect Engn & Comp Sci, Brisbane, Qld, Australia
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024 | 2024年
关键词
D O I
10.1109/AP-S/INC-USNC-URSI52054.2024.10686600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional microwave imaging as an inverse problem is ill-posed, non-linear, and requires large computational resources. To reduce that ill-posedness, an Attention U-Net model is proposed to generate a binary mask of the dielectric properties of the domain. The generated binary mask can be used to extract tissue regions, enabling the post-processing algorithms to focus on the target. In this work, the training images along with the ground truth labels are generated after a pre-processing of substantial simulation data. The ground truth labels are binarized before training. The testing results of the neural network indicate more than 82%, 70%, and 74% accuracy in the pixel properties estimation, Dice coefficient, and the mean intersection of the union. Those results indicate the potential of the proposed approach in medical microwave imaging.
引用
收藏
页码:2761 / 2762
页数:2
相关论文
共 50 条
  • [11] Convolutional block attention module U-Net: a method to improve attention mechanism and U-Net for remote sensing images
    Zhang, Yanjun
    Kong, Jiayuan
    Long, Sifang
    Zhu, Yuanhao
    He, Fushuai
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (02)
  • [12] Pixel U-Net: an improved version of U-Net for binary segmentation of wind turbine blades
    Rizvi, Syed Zeeshan
    Jamil, Mohsin
    Huang, Weimin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6299 - 6307
  • [13] Multi-scale channel attention U-Net: a novel framework for automated gallbladder segmentation in medical imaging
    Zhou, Yiming
    Wen, Xiaobo
    Fu, Kang
    Li, Meina
    Sun, Lin
    Hu, Xiao
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [14] Environmental sound segmentation utilizing Mask U-Net
    Sudo, Yui
    Itoyama, Katsutoshi
    Nishida, Kenji
    Nakadai, Kazuhiro
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5340 - 5345
  • [15] Crack Detecting by Recursive Attention U-Net
    Wu, Zhihao
    Lu, Tao
    Zhang, Yanduo
    Wang, Bo
    Zhao, Xungang
    2020 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION ENGINEERING (RCAE 2020), 2020, : 103 - 107
  • [16] Optimizing depth estimation with attention U-Net
    Farooq, Huma
    Chachoo, Manzoor Ahmad
    Bhat, Sajid Yousuf
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024,
  • [17] An encoder-decoder and modified U-Net network for microwave imaging of stroke
    Liu, Jinzhen
    Chen, Liming
    Xiong, Hui
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (02)
  • [18] CFU-Net: A Coarse-Fine U-Net With Multilevel Attention for Medical Image Segmentation
    Yin, Haitao
    Shao, Yudong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [19] MemAU-Net: Memory-Enhanced Attention U-Net for Medical Image Forgery Localization
    Wang, Nan
    Yi, Liping
    Wang, Gang
    Liu, Xiaoguang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [20] SAU-Net: Medical Image Segmentation Method Based on U-Net and Self-Attention
    Zhang S.-J.
    Peng Z.
    Li H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2433 - 2442