Attention U-Net for Binary Mask Generation in Medical Microwave Imaging

被引:0
作者
Yang, Yankai [1 ]
Xue, Fei [1 ]
Guo, Lei [1 ]
Abbosh, Amin [1 ]
机构
[1] Univ Queensland, Sch Elect Engn & Comp Sci, Brisbane, Qld, Australia
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024 | 2024年
关键词
D O I
10.1109/AP-S/INC-USNC-URSI52054.2024.10686600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional microwave imaging as an inverse problem is ill-posed, non-linear, and requires large computational resources. To reduce that ill-posedness, an Attention U-Net model is proposed to generate a binary mask of the dielectric properties of the domain. The generated binary mask can be used to extract tissue regions, enabling the post-processing algorithms to focus on the target. In this work, the training images along with the ground truth labels are generated after a pre-processing of substantial simulation data. The ground truth labels are binarized before training. The testing results of the neural network indicate more than 82%, 70%, and 74% accuracy in the pixel properties estimation, Dice coefficient, and the mean intersection of the union. Those results indicate the potential of the proposed approach in medical microwave imaging.
引用
收藏
页码:2761 / 2762
页数:2
相关论文
共 8 条
[1]   Nonlinear S-Parameters Inversion for Stroke Imaging [J].
Fedeli, Alessandro ;
Schenone, Valentina ;
Randazzo, Andrea ;
Pastorino, Matteo ;
Henriksson, Tommy ;
Semenov, Serguei .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (03) :1760-1771
[2]   Calibrated Frequency-Division Distorted Born Iterative Tomography for Real-Life Head Imaging [J].
Guo, L. ;
Nguyen-Trong, N. ;
Al-Saffar, A. ;
Stancombe, A. ;
Bialkowski, K. ;
Abbosh, A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (05) :1087-1103
[3]   Adaptive Clustering Distorted Born Iterative Method for Microwave Brain Tomography With Stroke Detection and Classification [J].
Guo, Lei ;
Khosravi-Farsani, Mojtaba ;
Stancombe, Anthony ;
Bialkowski, Konstanty ;
Abbosh, Amin .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (04) :1512-1523
[4]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[5]   DeepNIS: Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering [J].
Li, Lianlin ;
Wang, Long Gang ;
Teixeira, Fernando L. ;
Liu, Che ;
Nehorai, Arye ;
Cui, Tie Jun .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (03) :1819-1825
[6]   Machine Learning in Electromagnetics With Applications to Biomedical Imaging: A Review [J].
Li, Maokun ;
Guo, Rui ;
Zhang, Ke ;
Lin, Zhichao ;
Yang, Fan ;
Xu, Shenheng ;
Chen, Xudong ;
Massa, Andrea ;
Abubakar, Aria .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2021, 63 (03) :39-51
[7]  
Oktay O., 2018, ARXIV
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241