Synergistic effect of FeOOH cocatalyst and Al2O3 passivation layer on BiVO4 photoanode for enhanced photoelectrochemical water oxidation

被引:1
|
作者
Yang, Jiawei [1 ]
Tao, Ziyang [1 ]
Zhao, Qiang [1 ]
Li, Jinping [1 ]
Liu, Guang [1 ]
机构
[1] Taiyuan Univ Technol, Coll Chem & Chem Engn, Shanxi Key Lab Gas Energy Efficient & Clean Utiliz, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Alkali treatment; Passivation layer; Charge recombination; Hole transfer; HYDROGEN-PRODUCTION; PERFORMANCE; FILM;
D O I
10.1016/j.jallcom.2024.177461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
BiVO4 is one of the most attractive photoanodes for water oxidation due to its 2.4 eV narrow band gap, suitable band edge position, good stability in aqueous solution, low cost and non-toxicity. However, due to some inherent disadvantages such as low carrier mobility, severe charge recombination and slow water oxidation kinetics, the actual BiVO4 photocurrent density is often lower than the theoretical value of 7.5 mA cm-2 . In this paper, BiVO4 was modified by alkali-treated Al2O3 passivation layer and FeOOH, and the photocurrent density of BiVO4 reached an astonishing 3.8 mA cm-2 at 1.23 V RHE , and the ABPE (applied bias photon-to-current efficiency) was close to 1 %. The detailed structural characterization and electrochemical test show that Al2O3 prepared by ALD (atomic layer deposition) can play a role in passivation of BiVO4 surface state after alkali treatment, inhibit electron hole recombination on BiVO4 surface, and accelerate hole transfer. As a hole storage layer and catalyst layer, FeOOH promoted the interfacial hole transfer, increased the active sites at the electrode electrolyte interface, and significantly increased the water oxidation activity. This work provides a novel method to enhance the performance of water electrolysis by using ALD to assist passivation of bismuth vanadate photoanode surface states.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Synergistic Effect of Co3(HPO4)2(OH)2 Cocatalyst and Al2O3 Passivation Layer on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation
    Sun, Zijun
    Li, Zhen
    Chen, Jinlin
    Yang, Yuying
    Su, Chunrong
    Lv, Yumin
    Lu, Zhenhong
    He, Xiong
    Wang, Yongqing
    MOLECULES, 2024, 29 (03):
  • [2] A molecular cobaloxime cocatalyst and ultrathin FeOOH nanolayers co-modified BiVO4 photoanode for efficient photoelectrochemical water oxidation
    Cao, Hongyun
    Wang, Taotao
    Li, Jiaxing
    Wu, Jinbao
    Du, Pingwu
    JOURNAL OF ENERGY CHEMISTRY, 2022, 69 : 497 - 505
  • [3] Load CoOx cocatalyst on photoanode by spin coating and calcination for enhanced photoelectrochemical water oxidation: A case study on BiVO4
    Huang, Jingwei
    Tian, Yue
    Wang, Yani
    Liu, Tingting
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 299
  • [4] Fabrication of BiVO4 photoanode catalyzed with bimetallic sulfide nanoparticles for enhanced photoelectrochemical water oxidation
    Huang, Jingwei
    Luo, Wei
    Ma, Weize
    Yuan, Xiaoli
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (40) : 17600 - 17610
  • [5] Enhanced photoelectrochemical water oxidation of a BiVO4/tetra(amino)phthalocyanine composite photoanode
    Sudi, M. Shire
    Zhao, Long
    Dou, Yuqin
    Yang, Xin
    Wang, Qi
    Wang, Aijian
    Zhu, Weihua
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2023, 27 (07N10) : 1434 - 1440
  • [6] Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation
    Arunachalam, Maheswari
    Yung, Gun
    Lee, Hyo Seok
    Ahn, Kwang-Soon
    Heo, Jaeyeong
    Kang, Soon Hyung
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2019, 10 (04) : 424 - 432
  • [7] Molecular Copper Phthalocyanine and FeOOH Modified BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Oxidation
    Fan, Mengmeng
    Tao, Ziyang
    Zhao, Qiang
    Li, Jinping
    Liu, Guang
    Zhao, Chuan
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (09)
  • [8] Systematic engineering of BiVO4 photoanode for efficient photoelectrochemical water oxidation
    Liang, Zhiting
    Li, Meng
    Ye, Kai-Hang
    Tang, Tongxin
    Lin, Zhan
    Zheng, Yuying
    Huang, Yongchao
    Ji, Hongbing
    Zhang, Shanqing
    CARBON ENERGY, 2024, 6 (04)
  • [9] Analysis and characterization of BiVO4/FeOOH and BiVO4/α-Fe2O3 nanostructures photoanodes for photoelectrochemical water splitting
    Sanchez-Albores, R. M.
    Reyes-Vallejo, O.
    Rios-Valdovinos, E.
    Fernandez-Madrigal, A.
    Pola-Albores, F.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (11)
  • [10] Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation
    Zeng, Guihua
    Wang, Xiaojun
    Yu, Xiang
    Guo, Jia
    Zhu, Yi
    Zhang, Yuanming
    JOURNAL OF POWER SOURCES, 2019, 444