Unlocking Ultrafast Diagnosis of Retired Batteries via Interpretable Machine Learning and Optical Fiber Sensors

被引:0
|
作者
Zhang, Taolue [1 ,2 ]
Tan, Ruifeng [1 ,2 ]
Zhu, Pinxi [1 ]
Zhang, Tong-Yi [1 ,3 ]
Huang, Jiaqiang [1 ,2 ,4 ,5 ]
机构
[1] Hong Kong Univ Sci & Technol Guangzhou, Guangzhou Municipal Key Lab Mat Informat & Sustain, Guangzhou 511400, Guangdong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Acad Interdisciplinary Studies, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol Guangzhou, Adv Mat Thrust, Guangzhou 511400, Guangdong, Peoples R China
[4] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen 518045, Guangdong, Peoples R China
[5] HKUST Fok Ying Tung Res Inst, Guangzhou 511458, Guangdong, Peoples R China
来源
ACS ENERGY LETTERS | 2025年 / 10卷 / 02期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
LITHIUM-ION BATTERIES; IN-SITU; LIFETIME; CAPACITY;
D O I
10.1021/acsenergylett.4c03054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Retired batteries are of great economic and environmental importance, which are indispensable considerations in the life cycle of lithium-ion batteries. However, existing methods for evaluating retired batteries are time- and resource-consuming, hindering efficient screening for later recycling or reuse. Herein, combining optical fiber sensors and interpretable machine learning (ML), we establish a data-driven framework for retired battery datasets with 265 cells of different chemistries (LiFePO4/graphite, LiMn2O4/graphite) and achieve ultrafast state of health diagnosis within 3 min, offering mean absolute errors of 1.17% and 2.78%, respectively. The proposed data-driven framework identifies the salient regions in the time-resolved multivariable data and helps to uncover underlying thermodynamic/kinetic aging mechanisms. We also demonstrate the incorporated thermal information obtained via optical fibers complements voltage signals by improving prediction accuracy and antinoise ability. This work not only showcases the potential of battery sensing in retired battery diagnosis but also unlocks the unexplored synergy between sensing and interpretable ML for diverse battery applications.
引用
收藏
页码:862 / 871
页数:10
相关论文
共 15 条
  • [1] Improving diagnostics and prognostics of implantable cardioverter defibrillator batteries with interpretable machine learning models
    Galuppini, Giacomo
    Liang, Qiaohao
    Tamirisa, Prabhakar A.
    Lemmerman, Jeffrey A.
    Sullivan, Melani G.
    Mazack, Michael J. M.
    Gomadam, Partha M.
    Bazant, Martin Z.
    Braatz, Richard D.
    JOURNAL OF POWER SOURCES, 2024, 610
  • [2] Application of Machine Learning in Fiber Nonlinearity Modeling and Monitoring for Elastic Optical Networks
    Zhuge, Qunbi
    Zeng, Xiaobo
    Lun, Huazhi
    Cai, Meng
    Liu, Xiaomin
    Yi, Lilin
    Hu, Weisheng
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (13) : 3055 - 3063
  • [3] Battery Cross-Operation-Condition Lifetime Prediction via Interpretable Feature Engineering Assisted Adaptive Machine Learning
    Tao, Shengyu
    Sun, Chongbo
    Fu, Shiyi
    Wang, Yu
    Ma, Ruifei
    Han, Zhiyuan
    Sun, Yaojie
    Li, Yang
    Wei, Guodan
    Zhang, Xuan
    Zhou, Guangmin
    Sun, Hongbin
    ACS ENERGY LETTERS, 2023, 8 (08) : 3269 - 3279
  • [4] Towards smart and secure batteries: Linking pressure and temperature profiles with electrochemical behavior through hybrid optical fiber sensors
    Matuck, Lucca
    Santos, Joao P.
    Freitas, Fabio
    Fontes, Luis B.
    Bierlich, Jorg
    Genies, Sylvie
    Pinto, Joao L.
    Ferreira, Marta S.
    Raccurt, Olivier
    Nascimento, Micael
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [5] Customized Optical Fiber Birefringent Sensors to Multipoint and Simultaneous Temperature and Radial Strain Tracking of Lithium-Ion Batteries
    Matuck, Lucca C.
    Cabrita, Pedro D.
    Pinto, Joao L.
    Marques, Carlos A.
    Nascimento, Micael S.
    ADVANCED SENSOR RESEARCH, 2023, 2 (07):
  • [6] Unlocking the potential of unlabeled data: Self-supervised machine learning for battery aging diagnosis with real-world field data
    Wang, Qiao
    Ye, Min
    Celik, Sehriban
    Deng, Zhongwei
    Li, Bin
    Sauer, Dirk Uwe
    Li, Weihan
    JOURNAL OF ENERGY CHEMISTRY, 2024, 99 : 681 - 691
  • [7] Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries
    Ghannoum, AbdulRahman
    Nieva, Patricia
    Yu, Aiping
    Khajepour, Amir
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (47) : 41284 - 41290
  • [8] Revealing the electrochemical-mechanical correspondence between electrode films and 20 Ah prismatic Li-ion batteries via optical fiber monitoring
    Ge, Xiaoyu
    Zhang, Yi
    Du, Rui
    Chen, Nian
    Yu, Yifei
    Li, Zhen
    Huang, Yunhui
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [9] A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements
    Li, Yihuan
    Li, Kang
    Liu, Xuan
    Li, Xiang
    Zhang, Li
    Rente, Bruno
    Sun, Tong
    Grattan, Kenneth T. V.
    APPLIED ENERGY, 2022, 325
  • [10] Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM
    Giacoumidis, Elias
    Lin, Yi
    Wei, Jinlong
    Aldaya, Ivan
    Tsokanos, Athanasios
    Barry, Liam P.
    FUTURE INTERNET, 2019, 11 (01)