Lattice Boltzmann modeling of the coherent solid-solid transition with elastic effects

被引:0
作者
Wu, Han [1 ,2 ]
Sun, Dongke [1 ,2 ]
Chen, Wei [3 ]
Fei, Qingguo [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Key Lab Struct & Thermal Protect High Speed Aircra, Minist Educ, Nanjing 211189, Peoples R China
[2] Southeast Univ, Jiangsu Key Lab Biomat & Devices, Dingjiaqiao 87, Nanjing 210096, Peoples R China
[3] AVIC Mfg Technol Inst, Power Beam Proc Lab, Beijing 100024, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann method; Domain pattern; Solid-state transition; MEAN-CURVATURE FLOW; PHASE; EQUATIONS; SCHEME;
D O I
10.1016/j.aml.2025.109527
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mesoscopic lattice Boltzmann model is proposed to investigate the dynamic evolution of solidstate structures during the hexagonal-to-orthorhombic transition, incorporating the micro-elastic theory. The model enables detailed observation of the morphology of both single- and multi- variant systems. The analytically recovered macroscopic governing equation is fully consistent with the kinetic theory, and the interactions between different domains are well characterized. The strategy opens up a vast range of solid-state phase transitions, particularly those involving multi-phase and multi-domain systems.
引用
收藏
页数:6
相关论文
共 36 条
[1]   A modified phase field approximation for mean curvature flow with conservation of the volume [J].
Brassel, M. ;
Bretin, E. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (10) :1157-1180
[2]   Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation [J].
Bronsard, L ;
Stoth, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (04) :769-807
[3]   A comparative study of local and nonlocal Allen-Cahn equations with mass conservation [J].
Chai, Zhenhua ;
Sun, Dongke ;
Wang, Huili ;
Shi, Baochang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 122 :631-642
[4]   LATTICE BOLTZMANN COMPUTATIONS FOR REACTION-DIFFUSION EQUATIONS [J].
DAWSON, SP ;
CHEN, S ;
DOOLEN, GD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1514-1523
[5]   Cellular Automata Model for Elastic Solid Material [J].
Dong Yin-Feng ;
Zhang Guang-Cai ;
Xu Ai-Guo ;
Gan Yan-Biao .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (01) :59-67
[6]   Morphology and stability of orthorhombic and hexagonal phases in a lamellar γ-Ti-42Al-8.5Nb alloy-A transmission electron microscopy study [J].
Gabrisch, Heike ;
Lorenz, Uwe ;
Pyczak, Florian ;
Rackel, Marcus ;
Stark, Andreas .
ACTA MATERIALIA, 2017, 135 :304-313
[7]   Lattice Boltzmann simulation of turbulent flow laden with finite-size particles [J].
Gao, Hui ;
Li, Hui ;
Wang, Lian-Ping .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (02) :194-210
[8]   Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case [J].
Guo, Zhaoli ;
Xu, Kun ;
Wang, Ruijie .
PHYSICAL REVIEW E, 2013, 88 (03)
[9]  
He XY, 1997, PHYS REV E, V56, P6811, DOI 10.1103/PhysRevE.56.6811
[10]   Size effects of electrocaloric cooling in ferroelectric nanowires [J].
Huang, Houbing ;
Zhang, Guangzu ;
Ma, Xingqiao ;
Liang, Deshan ;
Wang, Jianjun ;
Liu, Yang ;
Wang, Qing ;
Chen, Long-Qing .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (04) :1566-1575