Going Beyond Multi-Task Dense Prediction with Synergy Embedding Models

被引:0
|
作者
Huang, Huimin [1 ]
Huang, Yawen [2 ,6 ]
Lin, Lanfen [1 ]
Tong, Ruofeng [1 ,3 ]
Chen, Yen-Wei [4 ]
Zheng, Hao [2 ]
Li, Yuexiang [5 ]
Zheng, Yefeng [2 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Tencent YouTu Lab, Jarvis Res Ctr, Shenzhen, Peoples R China
[3] Zhejiang Lab, Hangzhou, Peoples R China
[4] Ritsumeikan Univ, Kyoto, Japan
[5] Guangxi Med Univ, Nanning, Peoples R China
[6] Tencent YouTu Lab, Shenzhen, Peoples R China
来源
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2024年
关键词
D O I
10.1109/CVPR52733.2024.02662
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-task visual scene understanding aims to leverage the relationships among a set of correlated tasks, which are solved simultaneously by embedding them within a unified network. However, most existing methods give rise to two primary concerns from a task-level perspective: (1) the lack of task-independent correspondences for distinct tasks, and (2) the neglect of explicit task-consensual dependencies among various tasks. To address these issues, we propose a novel synergy embedding models (SEM), which goes beyond multi-task dense prediction by leveraging two innovative designs: the intra-task hierarchy-adaptive module and the inter-task EM-interactive module. Specifically, the constructed intra-task module incorporates hierarchy-adaptive keys from multiple stages, enabling the efficient learning of specialized visual patterns with an optimal trade-off. In addition, the developed inter-task module learns interactions from a compact set of mutual bases among various tasks, benefiting from the expectation maximization (EM) algorithm. Extensive empirical evidence from two public benchmarks, NYUD-v2 and PASCAL-Context, demonstrates that SEM consistently outperforms state-of-the-art approaches across a range of metrics.
引用
收藏
页码:28181 / 28190
页数:10
相关论文
共 50 条
  • [1] Contrastive Multi-Task Dense Prediction
    Yang, Siwei
    Ye, Hanrong
    Xu, Dan
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 3190 - 3197
  • [2] Prompt Guided Transformer for Multi-Task Dense Prediction
    Lu, Yuxiang
    Sirejiding, Shalayiding
    Ding, Yue
    Wang, Chunlin
    Lu, Hongtao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6375 - 6385
  • [3] Multi-Task Learning with Knowledge Distillation for Dense Prediction
    Xu, Yangyang
    Yang, Yibo
    Zhang, Lefei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21493 - 21502
  • [4] Multi-Task Learning for Dense Prediction Tasks: A Survey
    Vandenhende, Simon
    Georgoulis, Stamatios
    Van Gansbeke, Wouter
    Proesmans, Marc
    Dai, Dengxin
    Van Gool, Luc
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3614 - 3633
  • [5] Exploring Relational Context for Multi-Task Dense Prediction
    Bruggemann, David
    Kanakis, Menelaos
    Obukhov, Anton
    Georgoulis, Stamatios
    Van Gool, Luc
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15849 - 15858
  • [6] Multi-task Network Embedding
    Xu, Linchuan
    Wei, Xiaokai
    Cao, Jiannong
    Yu, Philip S.
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 571 - 580
  • [7] Multi-task network embedding
    Linchuan Xu
    Xiaokai Wei
    Jiannong Cao
    Philip S. Yu
    International Journal of Data Science and Analytics, 2019, 8 : 183 - 198
  • [8] Multi-Task Learning With Multi-Query Transformer for Dense Prediction
    Xu, Yangyang
    Li, Xiangtai
    Yuan, Haobo
    Yang, Yibo
    Zhang, Lefei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1228 - 1240
  • [9] Multi-task network embedding
    Xu, Linchuan
    Wei, Xiaokai
    Cao, Jiannong
    Yu, Philip S.
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (02) : 183 - 198
  • [10] Hierarchical Multi-Task Word Embedding Learning for Synonym Prediction
    Fei, Hongliang
    Tan, Shulong
    Li, Ping
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 834 - 842