Numerical methods based on spline quasi-interpolation operators for integro-differential equations

被引:2
作者
Allouch, Chafik [1 ]
Barrera, Domingo [2 ]
Saou, Abdelmonaim [3 ]
Sbibih, Driss [4 ]
Tahrichi, Mohamed [3 ]
机构
[1] Univ Mohammed 1, LAMAO Lab, FPN MSC Team, MSC Team, Nador, Morocco
[2] Univ Granada, Dept Appl Math, Campus Fuentenueva s-n, Granada 18071, Spain
[3] Univ Mohammed First, Fac Sci, ANO Lab, Team ANAA, Oujda, Morocco
[4] Univ Mohammed First, Fac Sci, ANO Lab, Oujda, Morocco
来源
JOURNAL OF MATHEMATICAL MODELING | 2022年 / 10卷 / 04期
关键词
Integro-differential equations; quasi-interpolants; collocation method; Kantorovich method; COLLOCATION METHOD; DECOMPOSITION METHOD; FREDHOLM;
D O I
10.22124/JMM.2022.20181.1756
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose collocation and Kantorovich methods based on spline quasiinterpolants defined on a bounded interval to solve numerically a class of Fredholm integro-differential equations. We describe the computational aspects for calculating the approximate solutions and give theoretical results corresponding to the convergence order of each method in terms of the degree of the considered spline quasi-interpolant. Finally, we provide some numerical tests that confirm the theoretical results and prove the efficiency of the proposed methods.
引用
收藏
页码:387 / 401
页数:15
相关论文
共 34 条
[1]   A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form [J].
Akyuz-Dascioglu, Aysegul ;
Sezer, Mehmet .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (04) :527-539
[2]  
AL-Smadi M., 2014, RJASET, V7, P3809, DOI [DOI 10.19026/rjaset.7.738, 10.19026/rjaset.7.738, DOI 10.19026/RJASET.7.738]
[3]   Superconvergent methods based on quasi-interpolating operators for fredholm integral equations of the second kind. [J].
Allouch, C. ;
Remogna, S. ;
Sbibih, D. ;
Tahrichi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 404
[4]   Solving Fredholm integral equations by approximating kernels by spline quasi-interpolants [J].
Allouch, Chafik ;
Sablonniere, Paul ;
Sbibih, Driss .
NUMERICAL ALGORITHMS, 2011, 56 (03) :437-453
[5]  
Amirfakhrian M., 2013, Inter. J. Math. Model & Comput., V3, P237
[6]   The approximate solution of charged particle motion equations in oscillating magnetic fields using the local multiquadrics collocation method [J].
Assari, Pouria ;
Asadi-Mehregan, Fatemeh .
ENGINEERING WITH COMPUTERS, 2021, 37 (01) :21-38
[7]   The Implication of Local Thin Plate Splines for Solving Nonlinear Mixed Integro-Differential Equations Based on the Galerkin Scheme [J].
Assari, Pouria ;
Asadi-Mehregan, Fatemeh ;
Dehghan, Mehdi .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (04) :1066-1092
[8]   Local radial basis function scheme for solving a class of fractional integro-differential equations based on the use of mixed integral equations [J].
Assari, Pouria ;
Asadi-Mehregan, Fatemeh .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (08)
[10]   A Local Galerkin Integral Equation Method for Solving Integro-differential Equations Arising in Oscillating Magnetic Fields [J].
Assari, Pouria ;
Dehghan, Mehdi .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)