Covalent organic frameworks for high-performance rechargeable lithium metal batteries: Strategy, mechanism, and application

被引:0
|
作者
Zhang, Conghui [1 ]
Li, Fangkun [1 ]
Gu, Tengteng [1 ]
Song, Xin [1 ]
Yuan, Jujun [2 ]
Ouyang, Liuzhang [1 ]
Zhu, Min [1 ]
Liu, Jun [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
[2] Gannan Normal Univ, Coll Phys & Elect, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; Li metal batteries; Li dendrites; Separators; Artificial SEIs; Solid-state electrolytes; TRIAZINE-BASED FRAMEWORKS; ION BATTERIES; CRYSTALLINE; NANOSHEETS; ANODES; INTERPHASE; SEPARATORS;
D O I
10.1016/j.pmatsci.2025.101455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium metal is recognized as promising anode materials for achieving high energy density lithium metal batteries (LMBs) due to it has high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.04 V). However, the practical application of LMBs is restricted by uncontrollable Li dendrites and fragile solid electrolyte interphase (SEI). Covalent organic frameworks (COFs) provide an ideal platform for addressing the inherent problems of LMBs owing to their ordered Li+ transport channels and plentiful lithiophilic groups to promote uniform Li+ deposition, restrain Li dendrites, and eliminate side reactions. This paper comprehensively summarizes and discusses the application COF in LMBs. The design principle of COF and Li dendrites formation mechanisms are elucidated. Meanwhile, the latest developments in COF as separators, artificial SEIs and solid-state electrolytes to optimize LMBs performance are reviewed. Finally, COFs facing challenges and their future investigation prospects are discussed. We expect the review to provide theoretical guidance for the design of multifunctional COF and motivate researchers to further investigate the potential of COF in energy storage systems.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries
    Qiao, Yufeng
    Zeng, Xiaoyue
    Wang, Haihong
    Long, Jianlin
    Tian, Yanhong
    Lan, Jinle
    Yu, Yunhua
    Yang, Xiaoping
    MATERIALS, 2023, 16 (06)
  • [42] Covalent organic frameworks for solid-state electrolytes of lithium metal batteries
    Gao, Zhihui
    Liu, Qing
    Zhao, Genfu
    Sun, Yongjiang
    Guo, Hong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) : 7497 - 7516
  • [43] Metal Chalcogenides with Heterostructures for High-Performance Rechargeable Batteries
    Li, Yu
    Wu, Feng
    Qian, Ji
    Zhang, Minghao
    Yuan, Yanxian
    Bai, Ying
    Wu, Chuan
    SMALL SCIENCE, 2021, 1 (09):
  • [44] High-Performance Polyimide Covalent Organic Frameworks for Lithium-Ion Batteries: Exceptional Stability and Capacity Retention at High Current Densities
    Li, Jiali
    Zhang, Jinkai
    Hou, Yuxin
    Suo, Jinquan
    Liu, Jianchuan
    Li, Hui
    Qiu, Shilun
    Valtchev, Valentin
    Fang, Qianrong
    Liu, Xiaoming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (52)
  • [45] Covalent organic frameworks-based functional separators for rechargeable batteries: Design, mechanism, and applications
    Cao, Shaochong
    Tan, Jian
    Ma, Longli
    Liu, Yongshuai
    He, Qianming
    Lu, Wenyi
    Liu, Zhu
    Ye, Mingxin
    Shen, Jianfeng
    ENERGY STORAGE MATERIALS, 2024, 66
  • [46] High-performance lithium sulfur batteries based on nitrogen-doped graphitic carbon derived from covalent organic frameworks
    Zhang, Xue
    Yao, Lu
    Liu, Shuai
    Zhang, Qin
    Mai, Yiyong
    Hu, Nantao
    Wei, Hao
    MATERIALS TODAY ENERGY, 2018, 7 : 141 - 148
  • [47] Distributed Li-Ion Flux Enabled by Sulfonated Covalent Organic Frameworks for High-Performance Lithium Metal Anodes
    Han, Diandian
    Yang, Xiubei
    Li, Kuokuo
    Sun, Linhai
    Hou, Tian
    Zhang, Lin
    Sun, Yanyun
    Zhai, Lipeng
    Mi, Liwei
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (07)
  • [48] Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries
    Zhang, Lin
    Zhang, Xiaofei
    Han, Diandian
    Zhai, Lipeng
    Mi, Liwei
    SMALL METHODS, 2023, 7 (11):
  • [49] Metal organic frameworks derived NiSe2 microspheres wrapped with graphene as a high-performance cathode for rechargeable magnesium batteries
    Hu, Changchun
    Wang, Chengzhe
    Xia, Yaping
    Xu, Fei
    Li, Ting
    MATERIALS LETTERS, 2023, 341
  • [50] Metal-organic frameworks for nanoconfinement of chlorine in rechargeable lithium-chlorine batteries
    Xu, Yan
    Jiao, Long
    Ma, Jiale
    Zhang, Pan
    Tang, Yongfu
    Liu, Lingmei
    Liu, Ying
    Ding, Honghe
    Sun, Jifei
    Wang, Mingming
    Li, Zhenyu
    Jiang, Hai-Long
    Chen, Wei
    JOULE, 2023, 7 (03) : 515 - 528