Covalent organic frameworks for high-performance rechargeable lithium metal batteries: Strategy, mechanism, and application

被引:0
|
作者
Zhang, Conghui [1 ]
Li, Fangkun [1 ]
Gu, Tengteng [1 ]
Song, Xin [1 ]
Yuan, Jujun [2 ]
Ouyang, Liuzhang [1 ]
Zhu, Min [1 ]
Liu, Jun [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
[2] Gannan Normal Univ, Coll Phys & Elect, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; Li metal batteries; Li dendrites; Separators; Artificial SEIs; Solid-state electrolytes; TRIAZINE-BASED FRAMEWORKS; ION BATTERIES; CRYSTALLINE; NANOSHEETS; ANODES; INTERPHASE; SEPARATORS;
D O I
10.1016/j.pmatsci.2025.101455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium metal is recognized as promising anode materials for achieving high energy density lithium metal batteries (LMBs) due to it has high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.04 V). However, the practical application of LMBs is restricted by uncontrollable Li dendrites and fragile solid electrolyte interphase (SEI). Covalent organic frameworks (COFs) provide an ideal platform for addressing the inherent problems of LMBs owing to their ordered Li+ transport channels and plentiful lithiophilic groups to promote uniform Li+ deposition, restrain Li dendrites, and eliminate side reactions. This paper comprehensively summarizes and discusses the application COF in LMBs. The design principle of COF and Li dendrites formation mechanisms are elucidated. Meanwhile, the latest developments in COF as separators, artificial SEIs and solid-state electrolytes to optimize LMBs performance are reviewed. Finally, COFs facing challenges and their future investigation prospects are discussed. We expect the review to provide theoretical guidance for the design of multifunctional COF and motivate researchers to further investigate the potential of COF in energy storage systems.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Progress on application of covalent organic frameworks for advanced lithium metal batteries
    Ni, Xuyan
    Zhou, Jinqiu
    Long, Kecheng
    Qing, Piao
    Naren, Tuoya
    Huang, Shaozhen
    Liu, Wen
    Zhao, Qiwen
    Qian, Yijun
    Qian, Tao
    Yan, Chenglin
    Chen, Libao
    ENERGY STORAGE MATERIALS, 2024, 67
  • [2] Interweaved Nanofiber Anode Coating Based on Covalent Organic Frameworks for High-Performance Lithium-Metal Batteries
    Zhuang, Huifen
    Guo, Can
    Feng, Wenhai
    Wang, Liwen
    Zheng, Zixi
    Li, Qi
    Zhang, Haifu
    Chen, Yifa
    Lan, Ya-Qian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [3] Functional Separator Enabled by Covalent Organic Frameworks for High-Performance Li Metal Batteries
    Wang, Ce
    Li, Wanzhong
    Jin, Yuhong
    Liu, Jingbing
    Wang, Hao
    Zhang, Qianqian
    SMALL, 2023, 19 (28)
  • [4] Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries
    Ghazi, Zahid Ali
    Zhu, Lingyun
    Wang, Han
    Naeem, Abdul
    Khattak, Abdul Muqsit
    Liang, Bin
    Khan, Niaz Ali
    Wei, Zhixiang
    Li, Lianshan
    Tang, Zhiyong
    ADVANCED ENERGY MATERIALS, 2016, 6 (24)
  • [5] Conductive Metal-Organic Frameworks for Rechargeable Lithium Batteries
    Deng, Fengjun
    Zhang, Yuhang
    Yu, Yingjian
    BATTERIES-BASEL, 2023, 9 (02):
  • [6] Lithiophilic Covalent Organic Framework as Anode Coating for High-Performance Lithium Metal Batteries
    Wu, Xinyu
    Zhang, Shuoqing
    Xu, Xiaoyi
    Wen, Fuxiang
    Wang, Hanwen
    Chen, Hongzheng
    Fan, Xiulin
    Huang, Ning
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (11)
  • [7] Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries
    Wei, Chuanliang
    Tan, Liwen
    Zhang, Yuchan
    Zhang, Kai
    Xi, Baojuan
    Xiong, Shenglin
    Feng, Jinkui
    Qian, Yitai
    ACS NANO, 2021, 15 (08) : 12741 - 12767
  • [8] Covalent organic frameworks and their composites for rechargeable batteries
    Xu, Yuxia
    Gong, Jiayue
    Li, Qing
    Guo, Xiaotian
    Wan, Xin
    Xu, Lin
    Pang, Huan
    NANOSCALE, 2024, 16 (24) : 11429 - 11456
  • [9] Conjugated two-dimensional covalent organic frameworks as the high-performance anode for lithium-ion batteries: Mechanism and prediction
    Zhou, Rui
    Liu, Shuangyi
    Huang, Yang
    APPLIED SURFACE SCIENCE, 2023, 638
  • [10] Anthraquinone-Based Silicate Covalent Organic Frameworks as Solid Electrolyte Interphase for High-Performance Lithium-Metal Batteries
    Li, Chen
    Wang, Dan-Dong
    Poon Ho, Gerald Siu Hang
    Zhang, Zhengyang
    Huang, Jun
    Bang, Ki-Taek
    Lau, Chun Yin
    Leu, Shao-Yuan
    Wang, Yanming
    Kim, Yoonseob
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (45) : 24603 - 24614