Transfer learning-based diagnosis of breast cancer

被引:0
作者
Yedjour, Hayat [1 ]
Meftah, Bouchra [1 ]
Merzoug, Hasnia [1 ]
Yedjour, Dounia [1 ]
机构
[1] Univ Sci & Technol Oran Mohamed Boudiaf, Dept Comp Sci, BP 1505, El Mnaouer 31000, Algeria
来源
2024 1ST INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER, TELECOMMUNICATION AND ENERGY TECHNOLOGIES, ECTE-TECH | 2024年
关键词
Computer-aided detection; Convolutional neural networks; Transfer learning; Classification; ROI patches; MAMMOGRAPHY;
D O I
10.1109/ECTE-TECH62477.2024.10851182
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Among cancer types affecting women worldwide, breast cancer ranks as one of the leading causes of death, and early detection through screening is vital for improving survival outcomes. This study presents a deep learning-based method for classifying mammogram images into benign and malignant categories using the MIAS dataset. The proposed approach includes preprocessing mammograms, extracting Region of Interest patches, and classifying them using Convolutional Neural Networks with Transfer Learning and data augmentation to address data scarcity. The evaluation results demonstrate that the framework achieves promising classification performance.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Deep convolutional neural networks for mammography: advances, challenges and applications [J].
Abdelhafiz, Dina ;
Yang, Clifford ;
Ammar, Reda ;
Nabavi, Sheida .
BMC BIOINFORMATICS, 2019, 20 (Suppl 11)
[2]   Generative Adversarial Irregularity Detection in Mammography Images [J].
Ahmadi, Milad ;
Sabokrou, Mohammad ;
Fathy, Mahmood ;
Berangi, Reza ;
Adeli, Ehsan .
PREDICTIVE INTELLIGENCE IN MEDICINE (PRIME 2019), 2019, 11843 :94-104
[3]   Anomaly Detection of Breast Cancer Using Deep Learning [J].
Alloqmani, Ahad ;
Abushark, Yoosef B. ;
Khan, Asif Irshad .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) :10977-11002
[4]   Breast Cancer Detection and Classification Empowered With Transfer Learning [J].
Arooj, Sahar ;
Atta-ur-Rahman, Muhammad ;
Zubair, Muhammad ;
Khan, Muhammad Farhan ;
Alissa, Khalid ;
Khan, Muhammad Adnan ;
Mosavi, Amir .
FRONTIERS IN PUBLIC HEALTH, 2022, 10
[5]   Leveraging CNN and Transfer Learning for Classification of Histopathology Images [J].
Dubey, Achyut ;
Singh, Satish Kumar ;
Jiang, Xiaoyi .
MACHINE LEARNING, IMAGE PROCESSING, NETWORK SECURITY AND DATA SCIENCES, MIND 2022, PT II, 2022, 1763 :3-13
[6]   Breast Cancer Classification using Deep Transfer Learning on Structured Healthcare Data [J].
Farhadi, Akram ;
Chen, David ;
McCoy, Rozalina ;
Scott, Christopher ;
Miller, John A. ;
Vachon, Celine M. ;
Ngufor, Che .
2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, :277-286
[7]  
Gacsadi G., 2011, Directional features for automatic tumor classification of mammogram images
[8]  
Hepsag PU, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P418, DOI 10.1109/UBMK.2017.8093429
[9]   Cumulative Probability of False-Positive Recall or Biopsy Recommendation After 10 Years of Screening Mammography A Cohort Study [J].
Hubbard, Rebecca A. ;
Kerlikowske, Karla ;
Flowers, Chris I. ;
Yankaskas, Bonnie C. ;
Zhu, Weiwei ;
Miglioretti, Diana L. .
ANNALS OF INTERNAL MEDICINE, 2011, 155 (08) :481-U46
[10]   A Comparison Between a Deep Convolutional Neural Network and Radiologists for Classifying Regions of Interest in Mammography [J].
Kooi, Thijs ;
Gubern-Merida, Albert ;
Mordang, Jan-Jurre ;
Mann, Ritse ;
Pijnappel, Ruud ;
Schuur, Klaas ;
den Heeten, Ard ;
Karssemeijer, Nico .
BREAST IMAGING, IWDM 2016, 2016, 9699 :51-56