Gorenstein projective, injective and flat modules over trivial ring extensions

被引:5
作者
Mao, Lixin [1 ]
机构
[1] Nanjing Inst Technol, Sch Math & Phys, Nanjing 211167, Peoples R China
关键词
Trivial extension; Gorenstein projective module; Gorenstein injective module; Gorenstein flat module; Morita context ring; DIMENSION; CATEGORIES; FORMULAS; PAIRS;
D O I
10.1142/S0219498825500306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the concepts of generalized compatible and cocompatible bimodules in order to characterize Gorenstein projective, injective and flat modules over trivial ring extensions. Let R M be a trivial extension of a ring R by an R-R-bimodule M such that M is a generalized compatible R-R-bimodule and Z(R) is a generalized compatible R M-R M-bimodule. We prove that (X,alpha) is a Gorenstein projective left R M-module if and only if the sequence M circle times RM circle times RX -> M circle times alpha M circle times RX ->alpha X is exact and coker(alpha) is a Gorenstein projective left R-module. Analogously, we explicitly characterize Gorenstein injective and flat modules over trivial ring extensions. As an application, we describe Gorenstein projective, injective and flat modules over Morita context rings with zero bimodule homomorphisms.
引用
收藏
页数:23
相关论文
共 41 条
[1]  
[Anonymous], 2003, QUASIFROBENIUS RINGS, DOI DOI 10.1017/CBO9780511546525
[2]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[3]  
Auslander M, 1989, MEM SOC MATH FRANCE, V38, P5, DOI [10.24033/msmf.339, DOI 10.24033/MSMF.339]
[4]  
Auslander M., 1969, Memoirs of the American Mathematical Society, V94
[5]   Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension [J].
Avramov, LL ;
Martsinkovsky, A .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :393-440
[6]   Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2005, 288 (01) :137-211
[7]  
Beligiannis A., 2007, Memoirs American Mathematical Society, V188
[8]   An Auslander-type result for Gorenstein-projective modules [J].
Chen, Xiao-Wu .
ADVANCES IN MATHEMATICS, 2008, 218 (06) :2043-2050
[9]   On Gorenstein projective, injective and flat dimensions - A functorial description with applications [J].
Christensen, Lars Winther ;
Frankild, Anders ;
Holm, Henrik .
JOURNAL OF ALGEBRA, 2006, 302 (01) :231-279
[10]  
CHRISTENSEN LW, 2000, LECT NOTES MATH, V1747