Existence and concentration of solutions for a fractional Schrodinger-Poisson system with discontinuous nonlinearity

被引:0
作者
Mu, Changyang [1 ]
Yang, Zhipeng [1 ]
Zhang, Wei [2 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650500, Peoples R China
[2] Yunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Schrodinger-Poisson system; discontinuous nonlinearity; nonsmooth analysis; BOUND-STATES; EQUATION;
D O I
10.1515/ans-2023-0147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following fractional Schrodinger-Poisson system with discontinuous non-linearity: {epsilon(2s)(-Delta)su+V(x)u+phi u=H(u-beta)f(u),in R-3, epsilon(2s)(-Delta)(s)phi=u(2), in R-3, u>0,inR(3), where epsilon>0 is a small parameter,s is an element of(3/4,1),beta>0,His the Heaviside function, (-Delta)(s)u is the fractional Lapla-cian operator,V:R-3 -> R is a continuous potential andf:R -> Ris superlinear continuous nonlinearity with subcritical growth at infinity. By using non smooth analysis, we investigate the existence and concentration of solutions for the above problem. Moreover, we obtain some properties of these solutions, such as convergence and decay estimate
引用
收藏
页码:992 / 1011
页数:20
相关论文
共 48 条
[11]   Least energy sign-changing solutions for Schrodinger-Poisson systems with potential well [J].
Chen, Xiao-Ping ;
Tang, Chun-Lei .
ADVANCED NONLINEAR STUDIES, 2022, 22 (01) :390-415
[12]  
Clarke F. H., 1983, Optimization and nonsmooth analysis
[13]   On bound states concentrating on spheres for the Maxwell-Schrodinger equation [J].
D'Aprile, T ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :321-342
[14]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[15]  
dos Santos GG, 2020, Z ANGEW MATH PHYS, V71, DOI 10.1007/s00033-020-01296-7
[16]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[17]   Existence and Multiplicity of Solutions for a Fractional Schrodinger-Poisson System with Subcritical or Critical Growth [J].
Gu, Guangze ;
Mu, Changyang ;
Yang, Zhipeng .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)
[18]   Infinitely Many Solutions for the Nonlinear Schrodinger-Poisson System with Broken Symmetry [J].
Guo, Hui ;
Wang, Tao .
ADVANCED NONLINEAR STUDIES, 2021, 21 (03) :579-592
[19]   Multiple Positive Bound State Solutions for Fractional Schrodinger-Poisson System with Critical Nonlocal Term [J].
He, Xiaoming ;
Wang, Da-Bin .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
[20]   Existence and concentration of ground states for Schrodinger-Poisson equations with critical growth [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)