Stability of 2-soliton solutions in the modified Camassa-Holm equation

被引:1
作者
Li, Ji [1 ]
Liu, Yue [2 ]
Zhu, Guangming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
中国国家自然科学基金;
关键词
SHALLOW-WATER EQUATION; SOLITARY WAVES; NONLINEAR EQUATIONS; ORBITAL STABILITY; SOLITONS; BREAKING;
D O I
10.1007/s00208-025-03113-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The modified Camassa-Holm equation with cubic nonlinearity is a completely integrable model, utilized to describe the unidirectional propagation of shallow-water waves. In this study, we show that the 2-soliton, when employed as a solution to the initial-value problem for the modified Camassa-Holm equation, is nonlinearly stable to perturbations within the Sobolev space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document} related to the momentum density. This stability is demonstrated through the conservation of crucial quantities in the Sobolev spaces H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document}, H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1}$$\end{document}, and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{1}$$\end{document} in terms of the momentum density.
引用
收藏
页码:899 / 932
页数:34
相关论文
共 46 条
[1]  
Albert J., 1999, Automata Implementation. Third International Workshop on Implementing Automata, WIA'98. Revised Papers (Lecture Notes in Computer Science Vol.1660), P1
[2]  
Anco S., 2022, Research note
[4]   STABILITY AND INSTABILITY OF SOLITARY WAVES OF KORTEWEG-DEVRIES TYPE [J].
BONA, JL ;
SOUGANIDIS, PE ;
STRAUSS, WA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1987, 411 (1841) :395-412
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]   The Shallow-Water Models with Cubic Nonlinearity [J].
Chen, Robin Ming ;
Hu, Tianqiao ;
Liu, Yue .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
[7]   Stability of Peaked Solitary Waves for a Class of Cubic Quasilinear Shallow-Water Equations [J].
Chen, Robin Ming ;
Di, Huafei ;
Liu, Yue .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) :6186-6218
[8]   Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion [J].
Chen, Robin Ming ;
Liu, Yue ;
Qu, Changzheng ;
Zhang, Shuanghu .
ADVANCES IN MATHEMATICS, 2015, 272 :225-251
[9]   Poisson structure and action-angle variables for the Camassa-Holm equation [J].
Constantin, A ;
Ivanov, R .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 76 (01) :93-108
[10]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243