Kibria-Lukman Hybrid Estimator for the Conway-Maxwell-Poisson Regression Model

被引:0
|
作者
Alrweili, Hleil [1 ]
机构
[1] Northern Border Univ, Coll Sci, Dept Math, Ar Ar, Saudi Arabia
关键词
multicollinearity; ridge estimator; Liu estimator; Kibria-Lukman estimator; Kibria-Lukman hybrid estimator; modified ridge-type estimator; CMPMLE; MSE; Conway-Maxwell-Poisson regression; RIDGE-REGRESSION;
D O I
10.1285/i20705948v17n2p436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Conway-Maxwell-Poisson regression (CMPR) model provides a flexi- ble framework for analyzing count data in cases of over- , under-dispersion. Estimating the parameter in CMPR typically relies on the maximum likeli- hood estimator (MLE), which can be challenging, mainly when multicollinear- ity exists. In such cases, many estimators offer alternatives to MLE, but often with a more considerable bias. This paper introduces a new hybrid estimator, combining the modified ridge-type estimator's robustness with the Kibria- Lukman estimator's efficiency, named the Kibria-Lukman hybrid estimator (KLHE). We propose that KLHE address multicollinearity in CMPR, demon- strating its performance through Monte Carlo simulations. The effectiveness of KLHE is highlighted by its ability to handle multicollinearity, resulting in improved estimation accuracy compared to other estimators. We illustrate the practical application of KLHE using a real dataset, demonstrating its potential to enhance parameter estimation in CMPR models, particularly in settings with prevalent multicollinearity. KLHE is a valuable addition to the statistical toolkit, providing researchers with a robust and efficient means to address multicollinearity in CMPR modeling.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Modified Kibria-Lukman Estimator for the Conway-Maxwell-Poisson Regression Model: Simulation and Application
    Alreshidi, Nasser A.
    Alrasheedi, Masad A.
    Lukman, Adewale F.
    Alrweili, Hleil
    Farghali, Rasha A.
    MATHEMATICS, 2025, 13 (05)
  • [2] Kibria-Lukman estimator for the Conway-Maxwell Poisson regression model: Simulation and applications
    Abonazel, Mohamed R.
    Saber, Ashrakat Adel
    Awwad, Fuad A.
    SCIENTIFIC AFRICAN, 2023, 19
  • [3] Modified jackknife Kibria-Lukman estimator for the Poisson regression model
    Oranye, Henrietta Ebele
    Ugwuowo, Fidelis Ifeanyi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (06):
  • [4] Kibria-Lukman Hybrid Estimator for Handling Multicollinearity in Poisson Regression Model: Method and Application
    Alrweili, Hleil
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2024, 2024
  • [5] Jackknife Kibria-Lukman estimator for the beta regression model
    Koc, Tuba
    Dunder, Emre
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (21) : 7789 - 7805
  • [6] Jackknife Kibria-Lukman estimator for the beta regression model
    Koç, Tuba
    Dünder, Emre
    Communications in Statistics - Theory and Methods, 2024, 53 (21): : 7789 - 7805
  • [7] Kibria-Lukman type estimator for gamma regression model
    Shewa, Gladys Amos
    Ugwuowo, Fidelis Ifeayi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (01):
  • [8] On the jackknife Kibria-Lukman estimator for the linear regression model
    Ugwuowo, Fidelis Ifeanyi
    Oranye, Henrietta Ebele
    Arum, Kingsley Chinedu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 6116 - 6128
  • [9] On the mixed Kibria-Lukman estimator for the linear regression model
    Chen, Hongmei
    Wu, Jibo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] On the preliminary test Kibria-Lukman estimator for the linear regression model
    Deng, Xiangyun
    Wu, Jibo
    Kibria, B. M. Golam
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,