Unique Li Composite Anode with LiF on the Surface and Li-Sn Alloy Inside for Next Generation Li Metal Batteries

被引:0
作者
Xiao, Zhifeng [1 ]
Chen, Jinbiao [1 ,2 ]
Zhang, Haitao [1 ]
Yu, Kaichen [1 ]
Li, Jie [2 ]
Li, Xifang [3 ]
Alodhayb, Abdullah N. [4 ]
Shi, Zhicong [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Inst Batteries, Guangzhou 510006, Peoples R China
[2] Politecn Milan, Dept Energy, Via Lambruschini 4, I-20156 Milan, Italy
[3] Beijing Dacheng Sch, Beijing 100141, Peoples R China
[4] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
关键词
Lithium metal anode; Li composite anode; LiF; Li-Sn alloy; PROTECTIVE LAYER; PERFORMANCE; HOSTS;
D O I
10.1002/batt.202500031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium metal anode (LMA) is considered a promising anode with low electrochemical redox potential and ultrahigh theoretical specific capacity (3680 mAh g-1) for next-generation high-energy batteries. However, the practical usage of LMA is still limited by the uncontrolled lithium dendrite growth, huge volume expansion, and low coulombic efficiency due to inhomogeneous lithium stripping/plating and side reactions with electrolytes. In this work, a unique Li composite anode (LiF-Li-Li22Sn5@Ni) is prepared for the first time via a facile one-step thermal fusion method. The LiF-Li-Li22Sn5@Ni anode consists of LiF on the surface, with Li-Sn alloy and Ni inside. Among them, Sn serves as the lithiophilic site, which reduces the nucleation overpotential of lithium and inhibits the formation of dendrites. Ni, which is chemically inert to Li, can maintain the structural stability of the LiF-Li-Li22Sn5@Ni anode. Furthermore, the LiF on the surface can inhibit Li dendrite growth and induce uniform Li deposition. As a result, the performance of cell is remarkably improved, with more than 1500 hours of cycling in a symmetrical cell at 1 mA cm-2 for 1 hour, and a capacity retention of 88.4 % after 800 cycles for the full cell assembled with LFP.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes [J].
Adair, Keegan R. ;
Iqbal, Muhammad ;
Wang, Changhong ;
Zhao, Yang ;
Banis, Mohammad Norouzi ;
Li, Ruying ;
Zhang, Li ;
Yang, Rong ;
Lu, Shigang ;
Sun, Xueliang .
NANO ENERGY, 2018, 54 :375-382
[2]   A Facile Chemical Reduction Approach of Li-Sn Modified Li Anode for Dendrite Suppression [J].
Amardeep, Amardeep ;
Freschi, Donald J. ;
Sang, Lingzi ;
Liu, Jian .
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (09)
[3]   Building a stable artificial solid electrolyte interphase on lithium metal anodes toward long-life Li-O2 batteries [J].
Chen, Jinbiao ;
Li, Dongdong ;
Lin, Kaiji ;
Cheng, Yifeng ;
Shi, Zhicong .
JOURNAL OF POWER SOURCES, 2022, 540
[4]   Realizing Ultrathin LiSn Alloy Anode by Tuning the Wettability of Molten Li for High-Energy-Density Batteries [J].
Chen, Yifei ;
Zhang, Qihang ;
Wang, Kaiming ;
Shen, Mengyuan ;
Zhang, Liang ;
Li, Yunpeng ;
Yuan, Jiamin ;
Wang, Anli ;
Shen, Fei ;
Han, Xiaogang .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) :28570-28577
[5]   Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering [J].
Chen, Yuanmao ;
Ke, Xi ;
Cheng, Yifeng ;
Fan, Mouping ;
Wu, Wenli ;
Huang, Xinyue ;
Liang, Yaohua ;
Zhong, Yicheng ;
Ao, Zhimin ;
Lai, Yanqing ;
Wang, Guoxiu ;
Shi, Zhicong .
ENERGY STORAGE MATERIALS, 2020, 26 :56-64
[6]   Catalytic Chemistry Derived Artificial Solid Electrolyte Interphase for Stable Lithium Metal Anodes Working at 20 mA cm-2 and 20 mAh cm-2 [J].
Cheng, Yifeng ;
Wang, Zhijie ;
Chen, Jinbiao ;
Chen, Yuanmao ;
Ke, Xi ;
Wu, Duojie ;
Zhang, Qing ;
Zhu, Yuanmin ;
Yang, Xuming ;
Gu, Meng ;
Guo, Zaiping ;
Shi, Zhicong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (30)
[7]   Lithium Host:Advanced architecture components for lithium metal anode [J].
Cheng, Yifeng ;
Chen, Jinbiao ;
Chen, Yuanmao ;
Ke, Xi ;
Li, Jie ;
Yang, Yong ;
Shi, Zhicong .
ENERGY STORAGE MATERIALS, 2021, 38 :276-298
[8]   Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries [J].
Cheng, Yifeng ;
Ke, Xi ;
Chen, Yuanmao ;
Huang, Xinyue ;
Shi, Zhicong ;
Guo, Zaiping .
NANO ENERGY, 2019, 63
[9]   A high-performance Li metal anode enabled by nano-NiO for high-energy density Li metal batteries [J].
Chu, Xu ;
Dong, Feilong ;
Zhang, Xie ;
Liu, Yulong ;
Jiang, Ying ;
Xie, Haiming .
JOURNAL OF ENERGY STORAGE, 2024, 94
[10]   Homogenizing the Li-ion flux by multi-element alloying modified for 3D dendrite-free lithium anode [J].
Deng, Yunlong ;
Gao, Jian ;
Wang, Ming ;
Luo, Congshan ;
Zhou, Chuanjiyue ;
Wu, Mengqiang .
ENERGY STORAGE MATERIALS, 2022, 48 :114-122