Deposition of ZnO and Al-doped ZnO thin films using pressed-sintered targets

被引:1
|
作者
Madera, Rozen Grace B. [1 ,2 ,3 ]
Nagai, Hiroki [2 ]
Onuma, Takeyoshi [2 ]
Honda, Tohru [2 ]
Yamaguchi, Tomohiro [2 ]
Vasquez Jr., Magdaleno R. [1 ]
机构
[1] Univ Philippines, Coll Engn, Dept Min Met & Mat Engn, Quezon City 1101, Philippines
[2] Kogakuin Univ, Sch Adv Engn, Dept Appl Phys, Hachioji, Tokyo 1920015, Japan
[3] Univ Philippines, Elect & Elect Engn Inst, Coll Engn, Quezon City 1101, Philippines
关键词
Sputtering; Doping; ZnO; AZO; Powder target; INDIUM-TIN-OXIDE; TRANSPARENT CONDUCTING OXIDES; ELECTRICAL-PROPERTIES; OPTICAL-PROPERTIES; TEMPERATURE; AL2O3;
D O I
10.1016/j.physb.2024.416733
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Zinc oxide (ZnO) and aluminum-doped ZnO (AZO) thin films were deposited using a custom-built deposition system operated by a radio frequency power supply. The targets used for the deposition process were made from custom-made pressed-sintered targets. Sputter deposition was carried out using argon gas only at 9.5 Pa and 50 W power. Growth of ZnO and AZO films with a preferred orientation along the c-axis was confirmed. Microscopy images revealed the growth of uniformly distributed grains that are dense and void-free with a columnar structure. Visible light transmittance ranged from 70 to 80%. For AZO films, the Al doping level was 0.64 at.%, the sheet resistance was at 560.3 ohm/sq, carrier concentration at -2.65 x 1020 cm(-3), and mobility at 14.50 cm(2)V(-1)s(-1). The figure of merit is 1.2 x 10(-4) ohm(-1). This work demonstrated the feasibility of preparing powder-based targets with a tunable composition to deposit transparent thin films under low vacuum conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Comparative Analysis of Al-Doped ZnO and Ga-Doped ZnO Thin Films
    Jun, Min-Chul
    Park, Sang-Uk
    Koh, Jung-Hyuk
    INTEGRATED FERROELECTRICS, 2012, 140 : 166 - 176
  • [2] Al-doped and in-doped ZnO thin films in heterojunctions with silicon
    Chabane, L.
    Zebbar, N.
    Kechouane, M.
    Aida, M. S.
    Trari, M.
    THIN SOLID FILMS, 2016, 605 : 57 - 63
  • [3] Effect of Gallium Interlayer in ZnO and Al-doped ZnO Thin Films
    Bhoomanee, Chawalit
    Nilphai, Sanpet
    Sutthana, Sutthipoj
    Ruankham, Pipat
    Choopun, Supab
    Wongratanaphisan, Duangmanee
    INTEGRATED FERROELECTRICS, 2015, 165 (01) : 121 - 130
  • [4] Structure and characterization of the sputtered ZnO, Al-doped ZnO, Ti-doped ZnO and Ti, Al-co-doped ZnO thin films
    Lin, Jing-Chie
    Huang, Mao-Chia
    Wang, TsingHai
    Wu, Jian-Nan
    Tseng, Yao-Tien
    Peng, Kun-Cheng
    MATERIALS EXPRESS, 2015, 5 (02) : 153 - 158
  • [5] Polycrystalline Transparent Al-Doped ZnO Thin Films for Photosensitivity and Optoelectronic Applications
    Petrov, Victor V.
    Ignatieva, Irina O.
    Volkova, Maria G.
    Gulyaeva, Irina A.
    Pankov, Ilya V.
    Bayan, Ekaterina M.
    NANOMATERIALS, 2023, 13 (16)
  • [6] Preparation and characterization of Al-doped ZnO piezoelectric thin films grown by pulsed laser deposition
    Taabouche, A.
    Bouabellou, A.
    Kermiche, F.
    Hanini, F.
    Sedrati, C.
    Bouachiba, Y.
    Benazzouz, C.
    CERAMICS INTERNATIONAL, 2016, 42 (06) : 6701 - 6706
  • [7] Influence of deposition parameters on ZnO and ZnO:Al thin films
    Duygulu, Nilufer Evcimen
    Kodolbas, Alp Osman
    Ekerim, Ahmet
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 9-10, 2014, 11 (9-10): : 1460 - 1463
  • [8] High mobility transparent conductive Al-doped ZnO thin films by atomic layer deposition
    Lin, Man-Ling
    Huang, Jheng-Ming
    Ku, Ching-Shun
    Lin, Chih-Ming
    Lee, Hsin-Yi
    Juang, Jenh-Yih
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 : 565 - 571
  • [9] Effect of concentration, aging, and annealing on sol gel ZnO and Al-doped ZnO thin films
    Speaks, D. T.
    INTERNATIONAL JOURNAL OF MECHANICAL AND MATERIALS ENGINEERING, 2020, 15 (01)
  • [10] Structural, Optical, and Electrical Characterization of ZnO and Al-doped ZnO Thin Films Deposited by MOCVD
    Fragala, Maria Elena
    Malandrino, Graziella
    Giangregorio, Maria Michela
    Losurdo, Maria
    Bruno, Giovanni
    Lettieri, Stefano
    Amato, Luigi Santamaria
    Maddalena, Pasquale
    CHEMICAL VAPOR DEPOSITION, 2009, 15 (10-12) : 327 - 333