High-Performance Bipolar Small-Molecule Organic Cathode for Wide-Temperature-Range Aqueous Zinc-Ion Batteries

被引:0
|
作者
Hua, Kang [1 ]
Ma, Quanwei [1 ]
Liu, Yangyang [1 ]
Xiong, Peng [1 ]
Wang, Rui [1 ]
Yuan, Libei [2 ]
Hao, Junnan [3 ]
Zhang, Longhai [1 ]
Zhang, Chaofeng [1 ]
机构
[1] Anhui Univ, Inst Phys Sci & Informat Technol, Leibniz Res Ctr Mat Sci Anhui Prov, Hefei 230601, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
[3] Univ Adelaide, Sch Chem Engn, Adelaide 5005, Australia
基金
中国国家自然科学基金;
关键词
aqueous Zn-organic battery; wide temperature; bipolar organic electrodes; long cycling life; in situ characterization;
D O I
10.1021/acsnano.5c00833
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic small-molecules with redox activity are promising cathode candidates for aqueous zinc-ion batteries (AZIBs) due to their low cost, high safety and high theoretical capacity. However, their severe dissolution leads to unsatisfactory electrochemical performance. Here, a dihydro-octaaza-pentacene (DOP) compound is synthesized as a cathode for AZIBs by extending its N heterocyclic molecular structure. The extended N heterocyclic structure provides dual active sites of n-type (C=N) and p-type (-NH-) redox reactions while reducing dissolution through enhanced pi-conjugation. Hence, the Zn//DOP battery demonstrates improved performance, e.g., an enhanced capacity of 360 mAh g-1 at 0.05 A g-1. Even under extended temperature conditions of - 50 and 50 degrees C, the batteries still maintain the capacities of 172 and 312 mAh g-1, respectively. In/ex-situ spectroscopy provide a thorough understanding of the storage mechanisms of cations and anions (Zn2+/H+ and ClO4 -) through multielectron transfer process occurring at dual electroactive sites. This strategy offers a promising approach to designing high-performance zinc-organic batteries for sustainable energy storage.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [12] A universal small-molecule organic cathode for high-performance Li/Na/K-ion batteries br
    Hong, Yan
    Hu, Jiahui
    Tang, Wu
    Wei, Bangshuai
    Guo, Meichen
    Jia, Shan
    Fan, Cong
    ENERGY STORAGE MATERIALS, 2022, 52 : 61 - 68
  • [13] Metal ions and organic molecule co-intercalated vanadium oxide cathode for high-performance zinc-ion batteries
    Hu, Liang
    Sun, Qinghe
    Cai, Hongkun
    Ni, Jian
    Zhang, Jianjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 177
  • [14] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Zhai, Xian-Zhi
    Qu, Jin
    Hao, Shu-Meng
    Jing, Ya-Qiong
    Chang, Wei
    Wang, Juan
    Li, Wei
    Abdelkrim, Yasmine
    Yuan, Hongfu
    Yu, Zhong-Zhen
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [15] Hierarchical Carbon Nanosheet Embedded MnOx Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Shimeng
    Wang, Xiaoqi
    Li, Jianbo
    Chen, Yuwei
    Wu, Yu
    Bai, Shengchi
    Jin, Xu
    Jin, Bowen
    Shao, Mingfei
    BATTERIES & SUPERCAPS, 2023, 6 (03)
  • [16] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Xian-Zhi Zhai
    Jin Qu
    Shu-Meng Hao
    Ya-Qiong Jing
    Wei Chang
    Juan Wang
    Wei Li
    Yasmine Abdelkrim
    Hongfu Yuan
    Zhong-Zhen Yu
    Nano-Micro Letters, 2020, 12 (04) : 141 - 155
  • [17] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Xian-Zhi Zhai
    Jin Qu
    Shu-Meng Hao
    Ya-Qiong Jing
    Wei Chang
    Juan Wang
    Wei Li
    Yasmine Abdelkrim
    Hongfu Yuan
    Zhong-Zhen Yu
    Nano-Micro Letters, 2020, 12
  • [18] Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Zhao, Yajun
    Zhang, Pengjun
    Liang, Jinrui
    Xia, Xiaoyu
    Ren, Longtao
    Song, Li
    Liu, Wen
    Sun, Xiaoming
    ADVANCED MATERIALS, 2022, 34 (37)
  • [19] Ferroelectric-Enhanced cathode kinetics toward High-Performance aqueous Zinc-Ion batteries
    Li, Yue
    Cui, Xiaosha
    Yan, Jianfeng
    Zhang, Yaxiong
    Xie, Erqing
    Fu, Jiecai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 650 : 1605 - 1611
  • [20] Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries
    Yang, Bo
    Cao, Xianwen
    Wang, Shenghan
    Wang, Ning
    Sun, Chenglin
    ELECTROCHIMICA ACTA, 2021, 385 (385)