NOZZLE PRESSURE DEFECT DETECTION IN EXTRUSION-BASED BIO 3D PRINTING USING VIDEO-BASED MOTION ESTIMATION

被引:0
|
作者
Rahman, Md Anisur [1 ]
Khan, Md Asif Hasan [1 ]
Kim, Jinki [1 ]
机构
[1] Georgia Southern Univ, Statesboro, GA 30458 USA
来源
PROCEEDINGS OF ASME 2024 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS 2024 | 2024年
基金
美国国家科学基金会;
关键词
Structural health monitoring; additive manufacturing; bioprinting; extrusion pressure; nozzle clogging; defect detection; phase-based motion estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The emergence of bio-additive manufacturing marks a crucial advancement in the field of biomedical engineering. For successful biomedical applications including bioprinted organ transplants, ensuring the quality of printed structures poses a significant challenge. Among the major challenges encountered in ensuring the structural integrity of bioprinting, nozzle clogging stands out as one of the frequent concerns in the process. It disrupts the uniform distribution of extrusion pressure, leading to the formation of defective structures. This study focused on detecting defects arising from the irregularities in extrusion pressure. To address this concern, a video-based motion estimation technique, which emerged as a novel non-contact and non-destructive technique for assessing bio 3D printed structures, is employed in this research. While other advancements, including contact-based and laser-based approaches, may offer limited performance due to the soft, lightweight, and translucent nature of bioconstructs. In this study, defective and non-defective ear models are additively manufactured by an extrusion-based bioprinter with pneumatic dispensing. Extrusion pressure was strategically controlled to introduce defective bioprints similar to those caused by nozzle malfunctions. The vibration characteristics of the ear structures are captured by a high-speed camera and analyzed using phase-based motion estimation approaches. In addition to ambient excitations from the printing process, acoustic excitations from a subwoofer are employed to assess its impact on print quality. The increase in extrusion pressure, simulating clogged nozzle issues, resulted in significant changes in the vibration characteristics, including shifts in the resonance frequencies. By monitoring these modal property changes, defective bioconstructs could be reliably determined. These findings suggest that the proposed approach could effectively verify the structural integrity of additively manufactured bioconstructs. Implementing this method along with the real time defect detection technique will significantly enhance the structural integrity of additively manufactured bioconstructs and ultimately improve the production of healthy artificial organs, potentially saving countless lives.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Influence of gradation on extrusion-based 3D printing concrete with coarse aggregate
    Chen, Yidong
    Zhang, Yunsheng
    Zhang, Yu
    Pang, Bo
    Zhang, Wenhua
    Liu, Cheng
    Liu, Zhiyong
    Wang, Dafu
    Sun, Guowen
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 403
  • [32] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    José Luis Dávila
    Marcos Akira d’Ávila
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 675 - 686
  • [33] Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing
    Panda, Biranchi
    Unluer, Cise
    Tan, Ming Jen
    CEMENT & CONCRETE COMPOSITES, 2018, 94 : 307 - 314
  • [34] Extrusion-Based 3D Printing for Highly Porous Alginate Materials Production
    Menshutina, Natalia
    Abramov, Andrey
    Tsygankov, Pavel
    Lovskaya, Daria
    GELS, 2021, 7 (03)
  • [35] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    Davila, Jose Luis
    d'Avila, Marcos Akira
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (1-4): : 675 - 686
  • [36] Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques
    Amaresh Kadival
    Manpreet Kour
    Deepoo Meena
    Jayeeta Mitra
    Food and Bioprocess Technology, 2023, 16 : 987 - 1008
  • [37] Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques
    Kadival, Amaresh
    Kour, Manpreet
    Meena, Deepoo
    Mitra, Jayeeta
    FOOD AND BIOPROCESS TECHNOLOGY, 2023, 16 (05) : 987 - 1008
  • [38] Extrusion-Based 3D Printing of Fibrin for Modular Bone Tissue Engineering
    Piard, C.
    Fisher, J. P.
    TISSUE ENGINEERING PART A, 2016, 22 : S118 - S118
  • [39] Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes
    Lacey, Steven D.
    Kirsch, Dylan J.
    Li, Yiju
    Morgenstern, Joseph T.
    Zarket, Brady C.
    Yao, Yonggang
    Dai, Jiaqi
    Garcia, Laurence Q.
    Liu, Boyang
    Gao, Tingting
    Xu, Shaomao
    Raghavan, Srinivasa R.
    Connell, John W.
    Lin, Yi
    Hu, Liangbing
    ADVANCED MATERIALS, 2018, 30 (12)
  • [40] Machine learning-enabled optimization of extrusion-based 3D printing
    Dabbagh, Sajjad Rahmani
    Ozcan, Oguzhan
    Tasoglu, Savas
    METHODS, 2022, 206 : 27 - 40